MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natffn Structured version   Visualization version   Unicode version

Theorem natffn 16609
Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypothesis
Ref Expression
natrcl.1  |-  N  =  ( C Nat  D )
Assertion
Ref Expression
natffn  |-  N  Fn  ( ( C  Func  D )  X.  ( C 
Func  D ) )

Proof of Theorem natffn
Dummy variables  x  f  y  a  g  h  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3  |-  N  =  ( C Nat  D )
2 eqid 2622 . . 3  |-  ( Base `  C )  =  (
Base `  C )
3 eqid 2622 . . 3  |-  ( Hom  `  C )  =  ( Hom  `  C )
4 eqid 2622 . . 3  |-  ( Hom  `  D )  =  ( Hom  `  D )
5 eqid 2622 . . 3  |-  (comp `  D )  =  (comp `  D )
61, 2, 3, 4, 5natfval 16606 . 2  |-  N  =  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  C ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. h  e.  ( x
( Hom  `  C ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
7 ovex 6678 . . . . . . 7  |-  ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  e. 
_V
87rgenw 2924 . . . . . 6  |-  A. x  e.  ( Base `  C
) ( ( r `
 x ) ( Hom  `  D )
( s `  x
) )  e.  _V
9 ixpexg 7932 . . . . . 6  |-  ( A. x  e.  ( Base `  C ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  e. 
_V  ->  X_ x  e.  (
Base `  C )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  e.  _V )
108, 9ax-mp 5 . . . . 5  |-  X_ x  e.  ( Base `  C
) ( ( r `
 x ) ( Hom  `  D )
( s `  x
) )  e.  _V
1110rabex 4813 . . . 4  |-  { a  e.  X_ x  e.  (
Base `  C )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) A. h  e.  ( x ( Hom  `  C ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  e.  _V
1211csbex 4793 . . 3  |-  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  C ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. h  e.  ( x
( Hom  `  C ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  e.  _V
1312csbex 4793 . 2  |-  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  C ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. h  e.  ( x
( Hom  `  C ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  e.  _V
146, 13fnmpt2i 7239 1  |-  N  Fn  ( ( C  Func  D )  X.  ( C 
Func  D ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533   <.cop 4183    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953    Func cfunc 16514   Nat cnat 16601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-func 16518  df-nat 16603
This theorem is referenced by:  fuchom  16621
  Copyright terms: Public domain W3C validator