MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat2 Structured version   Visualization version   Unicode version

Theorem isnat2 16608
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1  |-  N  =  ( C Nat  D )
natfval.b  |-  B  =  ( Base `  C
)
natfval.h  |-  H  =  ( Hom  `  C
)
natfval.j  |-  J  =  ( Hom  `  D
)
natfval.o  |-  .x.  =  (comp `  D )
isnat2.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
isnat2.g  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
Assertion
Ref Expression
isnat2  |-  ( ph  ->  ( A  e.  ( F N G )  <-> 
( A  e.  X_ x  e.  B  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  /\  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( A `  y
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( ( x ( 2nd `  F ) y ) `
 h ) )  =  ( ( ( x ( 2nd `  G
) y ) `  h ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( A `  x ) ) ) ) )
Distinct variable groups:    x, h, y, A    x, B, y    C, h, x, y    h, F, x, y    h, G, x, y    h, H    ph, h, x, y    D, h, x, y
Allowed substitution hints:    B( h)    .x. ( x, y, h)    H( x, y)    J( x, y, h)    N( x, y, h)

Proof of Theorem isnat2
StepHypRef Expression
1 relfunc 16522 . . . . 5  |-  Rel  ( C  Func  D )
2 isnat2.f . . . . 5  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 1st2nd 7214 . . . . 5  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
41, 2, 3sylancr 695 . . . 4  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
5 isnat2.g . . . . 5  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
6 1st2nd 7214 . . . . 5  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  G  =  <. ( 1st `  G
) ,  ( 2nd `  G ) >. )
71, 5, 6sylancr 695 . . . 4  |-  ( ph  ->  G  =  <. ( 1st `  G ) ,  ( 2nd `  G
) >. )
84, 7oveq12d 6668 . . 3  |-  ( ph  ->  ( F N G )  =  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
98eleq2d 2687 . 2  |-  ( ph  ->  ( A  e.  ( F N G )  <-> 
A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) ) )
10 natfval.1 . . 3  |-  N  =  ( C Nat  D )
11 natfval.b . . 3  |-  B  =  ( Base `  C
)
12 natfval.h . . 3  |-  H  =  ( Hom  `  C
)
13 natfval.j . . 3  |-  J  =  ( Hom  `  D
)
14 natfval.o . . 3  |-  .x.  =  (comp `  D )
15 1st2ndbr 7217 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
161, 2, 15sylancr 695 . . 3  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
17 1st2ndbr 7217 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
181, 5, 17sylancr 695 . . 3  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
1910, 11, 12, 13, 14, 16, 18isnat 16607 . 2  |-  ( ph  ->  ( A  e.  (
<. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. )  <->  ( A  e.  X_ x  e.  B  ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) )  /\  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( A `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( ( x ( 2nd `  F ) y ) `
 h ) )  =  ( ( ( x ( 2nd `  G
) y ) `  h ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( A `  x ) ) ) ) )
209, 19bitrd 268 1  |-  ( ph  ->  ( A  e.  ( F N G )  <-> 
( A  e.  X_ x  e.  B  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  /\  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( A `  y
) ( <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( ( x ( 2nd `  F ) y ) `
 h ) )  =  ( ( ( x ( 2nd `  G
) y ) `  h ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >.  .x.  ( ( 1st `  G ) `  y ) ) ( A `  x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953    Func cfunc 16514   Nat cnat 16601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-func 16518  df-nat 16603
This theorem is referenced by:  fuccocl  16624  fucidcl  16625  invfuc  16634  curf2cl  16871  yonedalem4c  16917  yonedalem3  16920
  Copyright terms: Public domain W3C validator