MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrcl Structured version   Visualization version   Unicode version

Theorem nbgrcl 26233
Description: If a class has at least one neighbor, it must be a vertex. (Contributed by AV, 6-Jun-2021.)
Assertion
Ref Expression
nbgrcl  |-  ( N  e.  ( G NeighbVtx  X )  ->  X  e.  (Vtx
`  G ) )

Proof of Theorem nbgrcl
Dummy variables  g 
e  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nbgr 26228 . . 3  |- NeighbVtx  =  ( g  e.  _V , 
v  e.  (Vtx `  g )  |->  { n  e.  ( (Vtx `  g
)  \  { v } )  |  E. e  e.  (Edg `  g
) { v ,  n }  C_  e } )
21mpt2xeldm 7337 . 2  |-  ( N  e.  ( G NeighbVtx  X )  ->  ( G  e. 
_V  /\  X  e.  [_ G  /  g ]_ (Vtx `  g ) ) )
3 csbfv 6233 . . . 4  |-  [_ G  /  g ]_ (Vtx `  g )  =  (Vtx
`  G )
43eleq2i 2693 . . 3  |-  ( X  e.  [_ G  / 
g ]_ (Vtx `  g
)  <->  X  e.  (Vtx `  G ) )
54biimpi 206 . 2  |-  ( X  e.  [_ G  / 
g ]_ (Vtx `  g
)  ->  X  e.  (Vtx `  G ) )
62, 5simpl2im 658 1  |-  ( N  e.  ( G NeighbVtx  X )  ->  X  e.  (Vtx
`  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228
This theorem is referenced by:  nbgrel  26238  frgrnbnb  27157
  Copyright terms: Public domain W3C validator