MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgblem Structured version   Visualization version   Unicode version

Theorem nbuhgr2vtx1edgblem 26247
Description: Lemma for nbuhgr2vtx1edgb 26248. This reverse direction of nbgr2vtx1edg 26246 only holds for classes whose edges are subsets of the set of vertices (hypergraphs!) (Contributed by AV, 2-Nov-2020.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v  |-  V  =  (Vtx `  G )
nbgr2vtx1edg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
nbuhgr2vtx1edgblem  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b }  /\  a  e.  ( G NeighbVtx  b )
)  ->  { a ,  b }  e.  E )
Distinct variable groups:    E, a,
b    G, a, b    V, a, b

Proof of Theorem nbuhgr2vtx1edgblem
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . . 5  |-  V  =  (Vtx `  G )
2 nbgr2vtx1edg.e . . . . 5  |-  E  =  (Edg `  G )
31, 2nbgrel 26238 . . . 4  |-  ( G  e. UHGraph  ->  ( a  e.  ( G NeighbVtx  b )  <->  ( ( a  e.  V  /\  b  e.  V
)  /\  a  =/=  b  /\  E. e  e.  E  { b ,  a }  C_  e
) ) )
43adantr 481 . . 3  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b } )  ->  (
a  e.  ( G NeighbVtx  b )  <->  ( (
a  e.  V  /\  b  e.  V )  /\  a  =/=  b  /\  E. e  e.  E  { b ,  a }  C_  e )
) )
52eleq2i 2693 . . . . . . . . . 10  |-  ( e  e.  E  <->  e  e.  (Edg `  G ) )
6 edguhgr 26024 . . . . . . . . . 10  |-  ( ( G  e. UHGraph  /\  e  e.  (Edg `  G )
)  ->  e  e.  ~P (Vtx `  G )
)
75, 6sylan2b 492 . . . . . . . . 9  |-  ( ( G  e. UHGraph  /\  e  e.  E )  ->  e  e.  ~P (Vtx `  G
) )
81eqeq1i 2627 . . . . . . . . . . . . 13  |-  ( V  =  { a ,  b }  <->  (Vtx `  G
)  =  { a ,  b } )
9 pweq 4161 . . . . . . . . . . . . . . 15  |-  ( (Vtx
`  G )  =  { a ,  b }  ->  ~P (Vtx `  G )  =  ~P { a ,  b } )
109eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( (Vtx
`  G )  =  { a ,  b }  ->  ( e  e.  ~P (Vtx `  G
)  <->  e  e.  ~P { a ,  b } ) )
11 selpw 4165 . . . . . . . . . . . . . 14  |-  ( e  e.  ~P { a ,  b }  <->  e  C_  { a ,  b } )
1210, 11syl6bb 276 . . . . . . . . . . . . 13  |-  ( (Vtx
`  G )  =  { a ,  b }  ->  ( e  e.  ~P (Vtx `  G
)  <->  e  C_  { a ,  b } ) )
138, 12sylbi 207 . . . . . . . . . . . 12  |-  ( V  =  { a ,  b }  ->  (
e  e.  ~P (Vtx `  G )  <->  e  C_  { a ,  b } ) )
1413adantl 482 . . . . . . . . . . 11  |-  ( ( ( G  e. UHGraph  /\  e  e.  E )  /\  V  =  { a ,  b } )  ->  (
e  e.  ~P (Vtx `  G )  <->  e  C_  { a ,  b } ) )
15 prcom 4267 . . . . . . . . . . . . . . . 16  |-  { b ,  a }  =  { a ,  b }
1615sseq1i 3629 . . . . . . . . . . . . . . 15  |-  ( { b ,  a } 
C_  e  <->  { a ,  b }  C_  e )
17 eqss 3618 . . . . . . . . . . . . . . . . 17  |-  ( { a ,  b }  =  e  <->  ( {
a ,  b } 
C_  e  /\  e  C_ 
{ a ,  b } ) )
18 eleq1a 2696 . . . . . . . . . . . . . . . . . . 19  |-  ( e  e.  E  ->  ( { a ,  b }  =  e  ->  { a ,  b }  e.  E ) )
1918a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  V  /\  b  e.  V
)  /\  a  =/=  b )  ->  (
e  e.  E  -> 
( { a ,  b }  =  e  ->  { a ,  b }  e.  E
) ) )
2019com13 88 . . . . . . . . . . . . . . . . 17  |-  ( { a ,  b }  =  e  ->  (
e  e.  E  -> 
( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) )
2117, 20sylbir 225 . . . . . . . . . . . . . . . 16  |-  ( ( { a ,  b }  C_  e  /\  e  C_  { a ,  b } )  -> 
( e  e.  E  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) )
2221ex 450 . . . . . . . . . . . . . . 15  |-  ( { a ,  b } 
C_  e  ->  (
e  C_  { a ,  b }  ->  ( e  e.  E  -> 
( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
2316, 22sylbi 207 . . . . . . . . . . . . . 14  |-  ( { b ,  a } 
C_  e  ->  (
e  C_  { a ,  b }  ->  ( e  e.  E  -> 
( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
2423com13 88 . . . . . . . . . . . . 13  |-  ( e  e.  E  ->  (
e  C_  { a ,  b }  ->  ( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
2524adantl 482 . . . . . . . . . . . 12  |-  ( ( G  e. UHGraph  /\  e  e.  E )  ->  (
e  C_  { a ,  b }  ->  ( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
2625adantr 481 . . . . . . . . . . 11  |-  ( ( ( G  e. UHGraph  /\  e  e.  E )  /\  V  =  { a ,  b } )  ->  (
e  C_  { a ,  b }  ->  ( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
2714, 26sylbid 230 . . . . . . . . . 10  |-  ( ( ( G  e. UHGraph  /\  e  e.  E )  /\  V  =  { a ,  b } )  ->  (
e  e.  ~P (Vtx `  G )  ->  ( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
2827ex 450 . . . . . . . . 9  |-  ( ( G  e. UHGraph  /\  e  e.  E )  ->  ( V  =  { a ,  b }  ->  ( e  e.  ~P (Vtx `  G )  ->  ( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) ) )
297, 28mpid 44 . . . . . . . 8  |-  ( ( G  e. UHGraph  /\  e  e.  E )  ->  ( V  =  { a ,  b }  ->  ( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
3029impancom 456 . . . . . . 7  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b } )  ->  (
e  e.  E  -> 
( { b ,  a }  C_  e  ->  ( ( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  { a ,  b }  e.  E ) ) ) )
3130com14 96 . . . . . 6  |-  ( ( ( a  e.  V  /\  b  e.  V
)  /\  a  =/=  b )  ->  (
e  e.  E  -> 
( { b ,  a }  C_  e  ->  ( ( G  e. UHGraph  /\  V  =  {
a ,  b } )  ->  { a ,  b }  e.  E ) ) ) )
3231rexlimdv 3030 . . . . 5  |-  ( ( ( a  e.  V  /\  b  e.  V
)  /\  a  =/=  b )  ->  ( E. e  e.  E  { b ,  a }  C_  e  ->  ( ( G  e. UHGraph  /\  V  =  { a ,  b } )  ->  { a ,  b }  e.  E ) ) )
33323impia 1261 . . . 4  |-  ( ( ( a  e.  V  /\  b  e.  V
)  /\  a  =/=  b  /\  E. e  e.  E  { b ,  a }  C_  e
)  ->  ( ( G  e. UHGraph  /\  V  =  { a ,  b } )  ->  { a ,  b }  e.  E ) )
3433com12 32 . . 3  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b } )  ->  (
( ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b  /\  E. e  e.  E  { b ,  a }  C_  e )  ->  { a ,  b }  e.  E ) )
354, 34sylbid 230 . 2  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b } )  ->  (
a  e.  ( G NeighbVtx  b )  ->  { a ,  b }  e.  E ) )
36353impia 1261 1  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b }  /\  a  e.  ( G NeighbVtx  b )
)  ->  { a ,  b }  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   UHGraph cuhgr 25951   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-edg 25940  df-uhgr 25953  df-nbgr 26228
This theorem is referenced by:  nbuhgr2vtx1edgb  26248
  Copyright terms: Public domain W3C validator