MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod1 Structured version   Visualization version   Unicode version

Theorem nfcprod1 14640
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1  |-  F/_ k A
Assertion
Ref Expression
nfcprod1  |-  F/_ k prod_ k  e.  A  B
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem nfcprod1
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 14636 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 nfcv 2764 . . . . 5  |-  F/_ k ZZ
3 nfcprod1.1 . . . . . . 7  |-  F/_ k A
4 nfcv 2764 . . . . . . 7  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 3596 . . . . . 6  |-  F/ k  A  C_  ( ZZ>= `  m )
6 nfv 1843 . . . . . . . . 9  |-  F/ k  y  =/=  0
7 nfcv 2764 . . . . . . . . . . 11  |-  F/_ k
n
8 nfcv 2764 . . . . . . . . . . 11  |-  F/_ k  x.
9 nfmpt1 4747 . . . . . . . . . . 11  |-  F/_ k
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
107, 8, 9nfseq 12811 . . . . . . . . . 10  |-  F/_ k  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
11 nfcv 2764 . . . . . . . . . 10  |-  F/_ k  ~~>
12 nfcv 2764 . . . . . . . . . 10  |-  F/_ k
y
1310, 11, 12nfbr 4699 . . . . . . . . 9  |-  F/ k  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
146, 13nfan 1828 . . . . . . . 8  |-  F/ k ( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
1514nfex 2154 . . . . . . 7  |-  F/ k E. y ( y  =/=  0  /\  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
164, 15nfrex 3007 . . . . . 6  |-  F/ k E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
17 nfcv 2764 . . . . . . . 8  |-  F/_ k
m
1817, 8, 9nfseq 12811 . . . . . . 7  |-  F/_ k  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
19 nfcv 2764 . . . . . . 7  |-  F/_ k
x
2018, 11, 19nfbr 4699 . . . . . 6  |-  F/ k  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x
215, 16, 20nf3an 1831 . . . . 5  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )
222, 21nfrex 3007 . . . 4  |-  F/ k E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )
23 nfcv 2764 . . . . 5  |-  F/_ k NN
24 nfcv 2764 . . . . . . . 8  |-  F/_ k
f
25 nfcv 2764 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
2624, 25, 3nff1o 6135 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
27 nfcv 2764 . . . . . . . . . 10  |-  F/_ k
1
28 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
2923, 28nfmpt 4746 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
3027, 8, 29nfseq 12811 . . . . . . . . 9  |-  F/_ k  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )
3130, 17nffv 6198 . . . . . . . 8  |-  F/_ k
(  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )
3231nfeq2 2780 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )
3326, 32nfan 1828 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3433nfex 2154 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
) )
3523, 34nfrex 3007 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3622, 35nfor 1834 . . 3  |-  F/ k ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
3736nfiota 5855 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
381, 37nfcxfr 2762 1  |-  F/_ k prod_ k  e.  A  B
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   E.wrex 2913   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   iotacio 5849   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-prod 14636
This theorem is referenced by:  fprodcn  39832  dvmptfprod  40160  vonicc  40899
  Copyright terms: Public domain W3C validator