MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmmul Structured version   Visualization version   Unicode version

Theorem nmmul 22468
Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x  |-  X  =  ( Base `  R
)
nmmul.n  |-  N  =  ( norm `  R
)
nmmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
nmmul  |-  ( ( R  e. NrmRing  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .x.  B ) )  =  ( ( N `  A )  x.  ( N `  B )
) )

Proof of Theorem nmmul
StepHypRef Expression
1 nmmul.n . . 3  |-  N  =  ( norm `  R
)
2 eqid 2622 . . 3  |-  (AbsVal `  R )  =  (AbsVal `  R )
31, 2nrgabv 22465 . 2  |-  ( R  e. NrmRing  ->  N  e.  (AbsVal `  R ) )
4 nmmul.x . . 3  |-  X  =  ( Base `  R
)
5 nmmul.t . . 3  |-  .x.  =  ( .r `  R )
62, 4, 5abvmul 18829 . 2  |-  ( ( N  e.  (AbsVal `  R )  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .x.  B ) )  =  ( ( N `  A )  x.  ( N `  B )
) )
73, 6syl3an1 1359 1  |-  ( ( R  e. NrmRing  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .x.  B ) )  =  ( ( N `  A )  x.  ( N `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    x. cmul 9941   Basecbs 15857   .rcmulr 15942  AbsValcabv 18816   normcnm 22381  NrmRingcnrg 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-abv 18817  df-nrg 22390
This theorem is referenced by:  nrgdsdi  22469  nrgdsdir  22470  nminvr  22473  nmdvr  22474  nrginvrcnlem  22495
  Copyright terms: Public domain W3C validator