MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgdsdir Structured version   Visualization version   Unicode version

Theorem nrgdsdir 22470
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x  |-  X  =  ( Base `  R
)
nmmul.n  |-  N  =  ( norm `  R
)
nmmul.t  |-  .x.  =  ( .r `  R )
nrgdsdi.d  |-  D  =  ( dist `  R
)
Assertion
Ref Expression
nrgdsdir  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  x.  ( N `  C
) )  =  ( ( A  .x.  C
) D ( B 
.x.  C ) ) )

Proof of Theorem nrgdsdir
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  R  e. NrmRing )
2 nrgring 22467 . . . . . . 7  |-  ( R  e. NrmRing  ->  R  e.  Ring )
32adantr 481 . . . . . 6  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  R  e.  Ring )
4 ringgrp 18552 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
53, 4syl 17 . . . . 5  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  R  e.  Grp )
6 simpr1 1067 . . . . 5  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
7 simpr2 1068 . . . . 5  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
8 nmmul.x . . . . . 6  |-  X  =  ( Base `  R
)
9 eqid 2622 . . . . . 6  |-  ( -g `  R )  =  (
-g `  R )
108, 9grpsubcl 17495 . . . . 5  |-  ( ( R  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A ( -g `  R ) B )  e.  X )
115, 6, 7, 10syl3anc 1326 . . . 4  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A
( -g `  R ) B )  e.  X
)
12 simpr3 1069 . . . 4  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
13 nmmul.n . . . . 5  |-  N  =  ( norm `  R
)
14 nmmul.t . . . . 5  |-  .x.  =  ( .r `  R )
158, 13, 14nmmul 22468 . . . 4  |-  ( ( R  e. NrmRing  /\  ( A ( -g `  R
) B )  e.  X  /\  C  e.  X )  ->  ( N `  ( ( A ( -g `  R
) B )  .x.  C ) )  =  ( ( N `  ( A ( -g `  R
) B ) )  x.  ( N `  C ) ) )
161, 11, 12, 15syl3anc 1326 . . 3  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( N `  ( ( A (
-g `  R ) B )  .x.  C
) )  =  ( ( N `  ( A ( -g `  R
) B ) )  x.  ( N `  C ) ) )
178, 14, 9, 3, 6, 7, 12rngsubdir 18600 . . . 4  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A ( -g `  R
) B )  .x.  C )  =  ( ( A  .x.  C
) ( -g `  R
) ( B  .x.  C ) ) )
1817fveq2d 6195 . . 3  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( N `  ( ( A (
-g `  R ) B )  .x.  C
) )  =  ( N `  ( ( A  .x.  C ) ( -g `  R
) ( B  .x.  C ) ) ) )
1916, 18eqtr3d 2658 . 2  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( N `  ( A
( -g `  R ) B ) )  x.  ( N `  C
) )  =  ( N `  ( ( A  .x.  C ) ( -g `  R
) ( B  .x.  C ) ) ) )
20 nrgngp 22466 . . . . 5  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
2120adantr 481 . . . 4  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  R  e. NrmGrp )
22 nrgdsdi.d . . . . 5  |-  D  =  ( dist `  R
)
2313, 8, 9, 22ngpds 22408 . . . 4  |-  ( ( R  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A ( -g `  R
) B ) ) )
2421, 6, 7, 23syl3anc 1326 . . 3  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  =  ( N `  ( A ( -g `  R
) B ) ) )
2524oveq1d 6665 . 2  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  x.  ( N `  C
) )  =  ( ( N `  ( A ( -g `  R
) B ) )  x.  ( N `  C ) ) )
268, 14ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  X  /\  C  e.  X )  ->  ( A  .x.  C )  e.  X )
273, 6, 12, 26syl3anc 1326 . . 3  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  .x.  C )  e.  X
)
288, 14ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  B  e.  X  /\  C  e.  X )  ->  ( B  .x.  C )  e.  X )
293, 7, 12, 28syl3anc 1326 . . 3  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B  .x.  C )  e.  X
)
3013, 8, 9, 22ngpds 22408 . . 3  |-  ( ( R  e. NrmGrp  /\  ( A  .x.  C )  e.  X  /\  ( B 
.x.  C )  e.  X )  ->  (
( A  .x.  C
) D ( B 
.x.  C ) )  =  ( N `  ( ( A  .x.  C ) ( -g `  R ) ( B 
.x.  C ) ) ) )
3121, 27, 29, 30syl3anc 1326 . 2  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A  .x.  C ) D ( B  .x.  C
) )  =  ( N `  ( ( A  .x.  C ) ( -g `  R
) ( B  .x.  C ) ) ) )
3219, 25, 313eqtr4d 2666 1  |-  ( ( R  e. NrmRing  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  x.  ( N `  C
) )  =  ( ( A  .x.  C
) D ( B 
.x.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    x. cmul 9941   Basecbs 15857   .rcmulr 15942   distcds 15950   Grpcgrp 17422   -gcsg 17424   Ringcrg 18547   normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-abv 18817  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator