MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcnlem Structured version   Visualization version   Unicode version

Theorem nrginvrcnlem 22495
Description: Lemma for nrginvrcn 22496. Compare this proof with reccn2 14327, the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x  |-  X  =  ( Base `  R
)
nrginvrcn.u  |-  U  =  (Unit `  R )
nrginvrcn.i  |-  I  =  ( invr `  R
)
nrginvrcn.n  |-  N  =  ( norm `  R
)
nrginvrcn.d  |-  D  =  ( dist `  R
)
nrginvrcn.r  |-  ( ph  ->  R  e. NrmRing )
nrginvrcn.z  |-  ( ph  ->  R  e. NzRing )
nrginvrcn.a  |-  ( ph  ->  A  e.  U )
nrginvrcn.b  |-  ( ph  ->  B  e.  RR+ )
nrginvrcn.t  |-  T  =  ( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )
Assertion
Ref Expression
nrginvrcnlem  |-  ( ph  ->  E. x  e.  RR+  A. y  e.  U  ( ( A D y )  <  x  -> 
( ( I `  A ) D ( I `  y ) )  <  B ) )
Distinct variable groups:    x, y, I    ph, y    x, R, y    x, T, y   
x, U, y    x, A    x, B    x, D
Allowed substitution hints:    ph( x)    A( y)    B( y)    D( y)    N( x, y)    X( x, y)

Proof of Theorem nrginvrcnlem
StepHypRef Expression
1 nrginvrcn.t . . 3  |-  T  =  ( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )
2 1rp 11836 . . . . 5  |-  1  e.  RR+
3 nrginvrcn.r . . . . . . . 8  |-  ( ph  ->  R  e. NrmRing )
4 nrgngp 22466 . . . . . . . 8  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
53, 4syl 17 . . . . . . 7  |-  ( ph  ->  R  e. NrmGrp )
6 nrginvrcn.x . . . . . . . . 9  |-  X  =  ( Base `  R
)
7 nrginvrcn.u . . . . . . . . 9  |-  U  =  (Unit `  R )
86, 7unitss 18660 . . . . . . . 8  |-  U  C_  X
9 nrginvrcn.a . . . . . . . 8  |-  ( ph  ->  A  e.  U )
108, 9sseldi 3601 . . . . . . 7  |-  ( ph  ->  A  e.  X )
11 nrginvrcn.z . . . . . . . 8  |-  ( ph  ->  R  e. NzRing )
12 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
137, 12nzrunit 19267 . . . . . . . 8  |-  ( ( R  e. NzRing  /\  A  e.  U )  ->  A  =/=  ( 0g `  R
) )
1411, 9, 13syl2anc 693 . . . . . . 7  |-  ( ph  ->  A  =/=  ( 0g
`  R ) )
15 nrginvrcn.n . . . . . . . 8  |-  N  =  ( norm `  R
)
166, 15, 12nmrpcl 22424 . . . . . . 7  |-  ( ( R  e. NrmGrp  /\  A  e.  X  /\  A  =/=  ( 0g `  R
) )  ->  ( N `  A )  e.  RR+ )
175, 10, 14, 16syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( N `  A
)  e.  RR+ )
18 nrginvrcn.b . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
1917, 18rpmulcld 11888 . . . . 5  |-  ( ph  ->  ( ( N `  A )  x.  B
)  e.  RR+ )
20 ifcl 4130 . . . . 5  |-  ( ( 1  e.  RR+  /\  (
( N `  A
)  x.  B )  e.  RR+ )  ->  if ( 1  <_  (
( N `  A
)  x.  B ) ,  1 ,  ( ( N `  A
)  x.  B ) )  e.  RR+ )
212, 19, 20sylancr 695 . . . 4  |-  ( ph  ->  if ( 1  <_ 
( ( N `  A )  x.  B
) ,  1 ,  ( ( N `  A )  x.  B
) )  e.  RR+ )
2217rphalfcld 11884 . . . 4  |-  ( ph  ->  ( ( N `  A )  /  2
)  e.  RR+ )
2321, 22rpmulcld 11888 . . 3  |-  ( ph  ->  ( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )  e.  RR+ )
241, 23syl5eqel 2705 . 2  |-  ( ph  ->  T  e.  RR+ )
255adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  R  e. NrmGrp )
269adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  A  e.  U )
276, 7unitcl 18659 . . . . . . . . . . . 12  |-  ( A  e.  U  ->  A  e.  X )
2826, 27syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  A  e.  X )
296, 15nmcl 22420 . . . . . . . . . . 11  |-  ( ( R  e. NrmGrp  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
3025, 28, 29syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  A
)  e.  RR )
3130recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  A
)  e.  CC )
32 simprl 794 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
y  e.  U )
338, 32sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
y  e.  X )
346, 15nmcl 22420 . . . . . . . . . . 11  |-  ( ( R  e. NrmGrp  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
3525, 33, 34syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  y
)  e.  RR )
3635recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  y
)  e.  CC )
37 ngpgrp 22403 . . . . . . . . . . . . 13  |-  ( R  e. NrmGrp  ->  R  e.  Grp )
3825, 37syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  R  e.  Grp )
39 nrgring 22467 . . . . . . . . . . . . . . 15  |-  ( R  e. NrmRing  ->  R  e.  Ring )
403, 39syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
4140adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  R  e.  Ring )
42 nrginvrcn.i . . . . . . . . . . . . . 14  |-  I  =  ( invr `  R
)
437, 42, 6ringinvcl 18676 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  A  e.  U )  ->  (
I `  A )  e.  X )
4441, 26, 43syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( I `  A
)  e.  X )
457, 42, 6ringinvcl 18676 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  y  e.  U )  ->  (
I `  y )  e.  X )
4641, 32, 45syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( I `  y
)  e.  X )
47 eqid 2622 . . . . . . . . . . . . 13  |-  ( -g `  R )  =  (
-g `  R )
486, 47grpsubcl 17495 . . . . . . . . . . . 12  |-  ( ( R  e.  Grp  /\  ( I `  A
)  e.  X  /\  ( I `  y
)  e.  X )  ->  ( ( I `
 A ) (
-g `  R )
( I `  y
) )  e.  X
)
4938, 44, 46, 48syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( I `  A ) ( -g `  R ) ( I `
 y ) )  e.  X )
506, 15nmcl 22420 . . . . . . . . . . 11  |-  ( ( R  e. NrmGrp  /\  (
( I `  A
) ( -g `  R
) ( I `  y ) )  e.  X )  ->  ( N `  ( (
I `  A )
( -g `  R ) ( I `  y
) ) )  e.  RR )
5125, 49, 50syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  (
( I `  A
) ( -g `  R
) ( I `  y ) ) )  e.  RR )
5251recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  (
( I `  A
) ( -g `  R
) ( I `  y ) ) )  e.  CC )
5331, 36, 52mul32d 10246 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  ( N `  y
) )  x.  ( N `  ( (
I `  A )
( -g `  R ) ( I `  y
) ) ) )  =  ( ( ( N `  A )  x.  ( N `  ( ( I `  A ) ( -g `  R ) ( I `
 y ) ) ) )  x.  ( N `  y )
) )
543adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  R  e. NrmRing )
55 eqid 2622 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
566, 15, 55nmmul 22468 . . . . . . . . . . 11  |-  ( ( R  e. NrmRing  /\  A  e.  X  /\  ( ( I `  A ) ( -g `  R
) ( I `  y ) )  e.  X )  ->  ( N `  ( A
( .r `  R
) ( ( I `
 A ) (
-g `  R )
( I `  y
) ) ) )  =  ( ( N `
 A )  x.  ( N `  (
( I `  A
) ( -g `  R
) ( I `  y ) ) ) ) )
5754, 28, 49, 56syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  ( A ( .r `  R ) ( ( I `  A ) ( -g `  R
) ( I `  y ) ) ) )  =  ( ( N `  A )  x.  ( N `  ( ( I `  A ) ( -g `  R ) ( I `
 y ) ) ) ) )
586, 55, 47, 41, 28, 44, 46ringsubdi 18599 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A ( .r
`  R ) ( ( I `  A
) ( -g `  R
) ( I `  y ) ) )  =  ( ( A ( .r `  R
) ( I `  A ) ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) )
59 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 1r
`  R )  =  ( 1r `  R
)
607, 42, 55, 59unitrinv 18678 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  A  e.  U )  ->  ( A ( .r `  R ) ( I `
 A ) )  =  ( 1r `  R ) )
6141, 26, 60syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A ( .r
`  R ) ( I `  A ) )  =  ( 1r
`  R ) )
6261oveq1d 6665 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( A ( .r `  R ) ( I `  A
) ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) )  =  ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) )
6358, 62eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A ( .r
`  R ) ( ( I `  A
) ( -g `  R
) ( I `  y ) ) )  =  ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) )
6463fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  ( A ( .r `  R ) ( ( I `  A ) ( -g `  R
) ( I `  y ) ) ) )  =  ( N `
 ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) ) )
6557, 64eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  ( N `  ( (
I `  A )
( -g `  R ) ( I `  y
) ) ) )  =  ( N `  ( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) ) ) )
6665oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  ( N `  (
( I `  A
) ( -g `  R
) ( I `  y ) ) ) )  x.  ( N `
 y ) )  =  ( ( N `
 ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) )  x.  ( N `  y
) ) )
676, 59ringidcl 18568 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  X )
6841, 67syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( 1r `  R
)  e.  X )
696, 55ringcl 18561 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  A  e.  X  /\  (
I `  y )  e.  X )  ->  ( A ( .r `  R ) ( I `
 y ) )  e.  X )
7041, 28, 46, 69syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A ( .r
`  R ) ( I `  y ) )  e.  X )
716, 47grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  X  /\  ( A ( .r `  R ) ( I `
 y ) )  e.  X )  -> 
( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) )  e.  X )
7238, 68, 70, 71syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) )  e.  X )
736, 15, 55nmmul 22468 . . . . . . . . . 10  |-  ( ( R  e. NrmRing  /\  (
( 1r `  R
) ( -g `  R
) ( A ( .r `  R ) ( I `  y
) ) )  e.  X  /\  y  e.  X )  ->  ( N `  ( (
( 1r `  R
) ( -g `  R
) ( A ( .r `  R ) ( I `  y
) ) ) ( .r `  R ) y ) )  =  ( ( N `  ( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) ) )  x.  ( N `
 y ) ) )
7454, 72, 33, 73syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  (
( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) ) ( .r `  R
) y ) )  =  ( ( N `
 ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) )  x.  ( N `  y
) ) )
756, 55, 47, 41, 68, 70, 33rngsubdir 18600 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) ( .r
`  R ) y )  =  ( ( ( 1r `  R
) ( .r `  R ) y ) ( -g `  R
) ( ( A ( .r `  R
) ( I `  y ) ) ( .r `  R ) y ) ) )
766, 55, 59ringlidm 18571 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  y  e.  X )  ->  (
( 1r `  R
) ( .r `  R ) y )  =  y )
7741, 33, 76syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( 1r `  R ) ( .r
`  R ) y )  =  y )
786, 55ringass 18564 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  ( A  e.  X  /\  ( I `  y
)  e.  X  /\  y  e.  X )
)  ->  ( ( A ( .r `  R ) ( I `
 y ) ) ( .r `  R
) y )  =  ( A ( .r
`  R ) ( ( I `  y
) ( .r `  R ) y ) ) )
7941, 28, 46, 33, 78syl13anc 1328 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( A ( .r `  R ) ( I `  y
) ) ( .r
`  R ) y )  =  ( A ( .r `  R
) ( ( I `
 y ) ( .r `  R ) y ) ) )
807, 42, 55, 59unitlinv 18677 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  y  e.  U )  ->  (
( I `  y
) ( .r `  R ) y )  =  ( 1r `  R ) )
8141, 32, 80syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( I `  y ) ( .r
`  R ) y )  =  ( 1r
`  R ) )
8281oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A ( .r
`  R ) ( ( I `  y
) ( .r `  R ) y ) )  =  ( A ( .r `  R
) ( 1r `  R ) ) )
836, 55, 59ringridm 18572 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  A  e.  X )  ->  ( A ( .r `  R ) ( 1r
`  R ) )  =  A )
8441, 28, 83syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A ( .r
`  R ) ( 1r `  R ) )  =  A )
8579, 82, 843eqtrd 2660 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( A ( .r `  R ) ( I `  y
) ) ( .r
`  R ) y )  =  A )
8677, 85oveq12d 6668 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( 1r
`  R ) ( .r `  R ) y ) ( -g `  R ) ( ( A ( .r `  R ) ( I `
 y ) ) ( .r `  R
) y ) )  =  ( y (
-g `  R ) A ) )
8775, 86eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( 1r
`  R ) (
-g `  R )
( A ( .r
`  R ) ( I `  y ) ) ) ( .r
`  R ) y )  =  ( y ( -g `  R
) A ) )
8887fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  (
( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) ) ( .r `  R
) y ) )  =  ( N `  ( y ( -g `  R ) A ) ) )
8974, 88eqtr3d 2658 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  ( ( 1r `  R ) ( -g `  R ) ( A ( .r `  R
) ( I `  y ) ) ) )  x.  ( N `
 y ) )  =  ( N `  ( y ( -g `  R ) A ) ) )
9053, 66, 893eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  ( N `  y
) )  x.  ( N `  ( (
I `  A )
( -g `  R ) ( I `  y
) ) ) )  =  ( N `  ( y ( -g `  R ) A ) ) )
916, 47grpsubcl 17495 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  X  /\  A  e.  X )  ->  ( y ( -g `  R ) A )  e.  X )
9238, 33, 28, 91syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( y ( -g `  R ) A )  e.  X )
936, 15nmcl 22420 . . . . . . . . . 10  |-  ( ( R  e. NrmGrp  /\  (
y ( -g `  R
) A )  e.  X )  ->  ( N `  ( y
( -g `  R ) A ) )  e.  RR )
9425, 92, 93syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  (
y ( -g `  R
) A ) )  e.  RR )
9594recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  (
y ( -g `  R
) A ) )  e.  CC )
9617adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  A
)  e.  RR+ )
9711adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  R  e. NzRing )
987, 12nzrunit 19267 . . . . . . . . . . . . 13  |-  ( ( R  e. NzRing  /\  y  e.  U )  ->  y  =/=  ( 0g `  R
) )
9997, 32, 98syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
y  =/=  ( 0g
`  R ) )
1006, 15, 12nmrpcl 22424 . . . . . . . . . . . 12  |-  ( ( R  e. NrmGrp  /\  y  e.  X  /\  y  =/=  ( 0g `  R
) )  ->  ( N `  y )  e.  RR+ )
10125, 33, 99, 100syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  y
)  e.  RR+ )
10296, 101rpmulcld 11888 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  ( N `  y )
)  e.  RR+ )
103102rpred 11872 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  ( N `  y )
)  e.  RR )
104103recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  ( N `  y )
)  e.  CC )
105102rpne0d 11877 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  ( N `  y )
)  =/=  0 )
10695, 104, 52, 105divmuld 10823 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 ( y (
-g `  R ) A ) )  / 
( ( N `  A )  x.  ( N `  y )
) )  =  ( N `  ( ( I `  A ) ( -g `  R
) ( I `  y ) ) )  <-> 
( ( ( N `
 A )  x.  ( N `  y
) )  x.  ( N `  ( (
I `  A )
( -g `  R ) ( I `  y
) ) ) )  =  ( N `  ( y ( -g `  R ) A ) ) ) )
10790, 106mpbird 247 . . . . . 6  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  ( y ( -g `  R ) A ) )  /  ( ( N `  A )  x.  ( N `  y ) ) )  =  ( N `  ( ( I `  A ) ( -g `  R ) ( I `
 y ) ) ) )
108 nrginvrcn.d . . . . . . . . 9  |-  D  =  ( dist `  R
)
10915, 6, 47, 108ngpdsr 22409 . . . . . . . 8  |-  ( ( R  e. NrmGrp  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  =  ( N `  (
y ( -g `  R
) A ) ) )
11025, 28, 33, 109syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A D y )  =  ( N `
 ( y (
-g `  R ) A ) ) )
111110oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( A D y )  /  (
( N `  A
)  x.  ( N `
 y ) ) )  =  ( ( N `  ( y ( -g `  R
) A ) )  /  ( ( N `
 A )  x.  ( N `  y
) ) ) )
11215, 6, 47, 108ngpds 22408 . . . . . . 7  |-  ( ( R  e. NrmGrp  /\  (
I `  A )  e.  X  /\  (
I `  y )  e.  X )  ->  (
( I `  A
) D ( I `
 y ) )  =  ( N `  ( ( I `  A ) ( -g `  R ) ( I `
 y ) ) ) )
11325, 44, 46, 112syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( I `  A ) D ( I `  y ) )  =  ( N `
 ( ( I `
 A ) (
-g `  R )
( I `  y
) ) ) )
114107, 111, 1133eqtr4rd 2667 . . . . 5  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( I `  A ) D ( I `  y ) )  =  ( ( A D y )  /  ( ( N `
 A )  x.  ( N `  y
) ) ) )
115110, 94eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A D y )  e.  RR )
11624adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  T  e.  RR+ )
117116rpred 11872 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  T  e.  RR )
11818adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  B  e.  RR+ )
119118rpred 11872 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  B  e.  RR )
120103, 119remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  ( N `  y
) )  x.  B
)  e.  RR )
121 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A D y )  <  T )
12219adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  B
)  e.  RR+ )
12396rphalfcld 11884 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  /  2
)  e.  RR+ )
124122, 123rpmulcld 11888 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  B )  x.  (
( N `  A
)  /  2 ) )  e.  RR+ )
125124rpred 11872 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  B )  x.  (
( N `  A
)  /  2 ) )  e.  RR )
126 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
127122rpred 11872 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  x.  B
)  e.  RR )
128 min2 12021 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( N `  A )  x.  B
)  e.  RR )  ->  if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  <_ 
( ( N `  A )  x.  B
) )
129126, 127, 128sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  if ( 1  <_  (
( N `  A
)  x.  B ) ,  1 ,  ( ( N `  A
)  x.  B ) )  <_  ( ( N `  A )  x.  B ) )
13021adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  if ( 1  <_  (
( N `  A
)  x.  B ) ,  1 ,  ( ( N `  A
)  x.  B ) )  e.  RR+ )
131130rpred 11872 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  if ( 1  <_  (
( N `  A
)  x.  B ) ,  1 ,  ( ( N `  A
)  x.  B ) )  e.  RR )
132131, 127, 123lemul1d 11915 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  <_ 
( ( N `  A )  x.  B
)  <->  ( if ( 1  <_  ( ( N `  A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )  <_  (
( ( N `  A )  x.  B
)  x.  ( ( N `  A )  /  2 ) ) ) )
133129, 132mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )  <_  (
( ( N `  A )  x.  B
)  x.  ( ( N `  A )  /  2 ) ) )
1341, 133syl5eqbr 4688 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  T  <_  ( ( ( N `  A )  x.  B )  x.  ( ( N `  A )  /  2
) ) )
135123rpred 11872 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  /  2
)  e.  RR )
136312halvesd 11278 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  / 
2 )  +  ( ( N `  A
)  /  2 ) )  =  ( N `
 A ) )
13730, 35resubcld 10458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  -  ( N `  y )
)  e.  RR )
1386, 15, 47nm2dif 22429 . . . . . . . . . . . . . . . 16  |-  ( ( R  e. NrmGrp  /\  A  e.  X  /\  y  e.  X )  ->  (
( N `  A
)  -  ( N `
 y ) )  <_  ( N `  ( A ( -g `  R
) y ) ) )
13925, 28, 33, 138syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  -  ( N `  y )
)  <_  ( N `  ( A ( -g `  R ) y ) ) )
14015, 6, 47, 108ngpds 22408 . . . . . . . . . . . . . . . 16  |-  ( ( R  e. NrmGrp  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  =  ( N `  ( A ( -g `  R
) y ) ) )
14125, 28, 33, 140syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A D y )  =  ( N `
 ( A (
-g `  R )
y ) ) )
142139, 141breqtrrd 4681 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  -  ( N `  y )
)  <_  ( A D y ) )
143 min1 12020 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( N `  A )  x.  B
)  e.  RR )  ->  if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  <_ 
1 )
144126, 127, 143sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  if ( 1  <_  (
( N `  A
)  x.  B ) ,  1 ,  ( ( N `  A
)  x.  B ) )  <_  1 )
145 1red 10055 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
1  e.  RR )
146131, 145, 123lemul1d 11915 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  <_ 
1  <->  ( if ( 1  <_  ( ( N `  A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )  <_  (
1  x.  ( ( N `  A )  /  2 ) ) ) )
147144, 146mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( if ( 1  <_  ( ( N `
 A )  x.  B ) ,  1 ,  ( ( N `
 A )  x.  B ) )  x.  ( ( N `  A )  /  2
) )  <_  (
1  x.  ( ( N `  A )  /  2 ) ) )
1481, 147syl5eqbr 4688 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  T  <_  ( 1  x.  ( ( N `  A )  /  2
) ) )
149135recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  /  2
)  e.  CC )
150149mulid2d 10058 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( 1  x.  (
( N `  A
)  /  2 ) )  =  ( ( N `  A )  /  2 ) )
151148, 150breqtrd 4679 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  T  <_  ( ( N `
 A )  / 
2 ) )
152115, 117, 135, 121, 151ltletrd 10197 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A D y )  <  ( ( N `  A )  /  2 ) )
153137, 115, 135, 142, 152lelttrd 10195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  -  ( N `  y )
)  <  ( ( N `  A )  /  2 ) )
15430, 35, 135ltsubadd2d 10625 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  -  ( N `  y ) )  <  ( ( N `  A )  /  2 )  <->  ( N `  A )  <  (
( N `  y
)  +  ( ( N `  A )  /  2 ) ) ) )
155153, 154mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( N `  A
)  <  ( ( N `  y )  +  ( ( N `
 A )  / 
2 ) ) )
156136, 155eqbrtrd 4675 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  / 
2 )  +  ( ( N `  A
)  /  2 ) )  <  ( ( N `  y )  +  ( ( N `
 A )  / 
2 ) ) )
157135, 35, 135ltadd1d 10620 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  / 
2 )  <  ( N `  y )  <->  ( ( ( N `  A )  /  2
)  +  ( ( N `  A )  /  2 ) )  <  ( ( N `
 y )  +  ( ( N `  A )  /  2
) ) ) )
158156, 157mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( N `  A )  /  2
)  <  ( N `  y ) )
159135, 35, 122, 158ltmul2dd 11928 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  B )  x.  (
( N `  A
)  /  2 ) )  <  ( ( ( N `  A
)  x.  B )  x.  ( N `  y ) ) )
160119recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  B  e.  CC )
16131, 36, 160mul32d 10246 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  ( N `  y
) )  x.  B
)  =  ( ( ( N `  A
)  x.  B )  x.  ( N `  y ) ) )
162159, 161breqtrrd 4681 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( N `
 A )  x.  B )  x.  (
( N `  A
)  /  2 ) )  <  ( ( ( N `  A
)  x.  ( N `
 y ) )  x.  B ) )
163117, 125, 120, 134, 162lelttrd 10195 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  ->  T  <  ( ( ( N `  A )  x.  ( N `  y ) )  x.  B ) )
164115, 117, 120, 121, 163lttrd 10198 . . . . . 6  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( A D y )  <  ( ( ( N `  A
)  x.  ( N `
 y ) )  x.  B ) )
165115, 119, 102ltdivmuld 11923 . . . . . 6  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( ( A D y )  / 
( ( N `  A )  x.  ( N `  y )
) )  <  B  <->  ( A D y )  <  ( ( ( N `  A )  x.  ( N `  y ) )  x.  B ) ) )
166164, 165mpbird 247 . . . . 5  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( A D y )  /  (
( N `  A
)  x.  ( N `
 y ) ) )  <  B )
167114, 166eqbrtrd 4675 . . . 4  |-  ( (
ph  /\  ( y  e.  U  /\  ( A D y )  < 
T ) )  -> 
( ( I `  A ) D ( I `  y ) )  <  B )
168167expr 643 . . 3  |-  ( (
ph  /\  y  e.  U )  ->  (
( A D y )  <  T  -> 
( ( I `  A ) D ( I `  y ) )  <  B ) )
169168ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  U  ( ( A D y )  <  T  ->  ( ( I `  A ) D ( I `  y ) )  <  B ) )
170 breq2 4657 . . . . 5  |-  ( x  =  T  ->  (
( A D y )  <  x  <->  ( A D y )  < 
T ) )
171170imbi1d 331 . . . 4  |-  ( x  =  T  ->  (
( ( A D y )  <  x  ->  ( ( I `  A ) D ( I `  y ) )  <  B )  <-> 
( ( A D y )  <  T  ->  ( ( I `  A ) D ( I `  y ) )  <  B ) ) )
172171ralbidv 2986 . . 3  |-  ( x  =  T  ->  ( A. y  e.  U  ( ( A D y )  <  x  ->  ( ( I `  A ) D ( I `  y ) )  <  B )  <->  A. y  e.  U  ( ( A D y )  <  T  ->  ( ( I `  A ) D ( I `  y ) )  <  B ) ) )
173172rspcev 3309 . 2  |-  ( ( T  e.  RR+  /\  A. y  e.  U  (
( A D y )  <  T  -> 
( ( I `  A ) D ( I `  y ) )  <  B ) )  ->  E. x  e.  RR+  A. y  e.  U  ( ( A D y )  < 
x  ->  ( (
I `  A ) D ( I `  y ) )  < 
B ) )
17424, 169, 173syl2anc 693 1  |-  ( ph  ->  E. x  e.  RR+  A. y  e.  U  ( ( A D y )  <  x  -> 
( ( I `  A ) D ( I `  y ) )  <  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   Basecbs 15857   .rcmulr 15942   distcds 15950   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   1rcur 18501   Ringcrg 18547  Unitcui 18639   invrcinvr 18671  NzRingcnzr 19257   normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-topgen 16104  df-xrs 16162  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-abv 18817  df-nzr 19258  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390
This theorem is referenced by:  nrginvrcn  22496
  Copyright terms: Public domain W3C validator