Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirng Structured version   Visualization version   Unicode version

Theorem archirng 29742
Description: Property of Archimedean ordered groups, framing positive  Y between multiples of  X. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archirng.b  |-  B  =  ( Base `  W
)
archirng.0  |-  .0.  =  ( 0g `  W )
archirng.i  |-  .<  =  ( lt `  W )
archirng.l  |-  .<_  =  ( le `  W )
archirng.x  |-  .x.  =  (.g
`  W )
archirng.1  |-  ( ph  ->  W  e. oGrp )
archirng.2  |-  ( ph  ->  W  e. Archi )
archirng.3  |-  ( ph  ->  X  e.  B )
archirng.4  |-  ( ph  ->  Y  e.  B )
archirng.5  |-  ( ph  ->  .0.  .<  X )
archirng.6  |-  ( ph  ->  .0.  .<  Y )
Assertion
Ref Expression
archirng  |-  ( ph  ->  E. n  e.  NN0  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
Distinct variable groups:    n, X    n, Y    ph, n    .0. , n    .<_ , n    .< , n    .x. , n
Allowed substitution hints:    B( n)    W( n)

Proof of Theorem archirng
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( m  =  0  ->  (
m  .x.  X )  =  ( 0  .x. 
X ) )
21breq2d 4665 . . 3  |-  ( m  =  0  ->  ( Y  .<_  ( m  .x.  X )  <->  Y  .<_  ( 0  .x.  X ) ) )
3 oveq1 6657 . . . 4  |-  ( m  =  n  ->  (
m  .x.  X )  =  ( n  .x.  X ) )
43breq2d 4665 . . 3  |-  ( m  =  n  ->  ( Y  .<_  ( m  .x.  X )  <->  Y  .<_  ( n  .x.  X ) ) )
5 oveq1 6657 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
m  .x.  X )  =  ( ( n  +  1 )  .x.  X ) )
65breq2d 4665 . . 3  |-  ( m  =  ( n  + 
1 )  ->  ( Y  .<_  ( m  .x.  X )  <->  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
7 archirng.6 . . . . 5  |-  ( ph  ->  .0.  .<  Y )
8 archirng.1 . . . . . . 7  |-  ( ph  ->  W  e. oGrp )
9 isogrp 29702 . . . . . . . 8  |-  ( W  e. oGrp 
<->  ( W  e.  Grp  /\  W  e. oMnd ) )
109simprbi 480 . . . . . . 7  |-  ( W  e. oGrp  ->  W  e. oMnd )
11 omndtos 29705 . . . . . . 7  |-  ( W  e. oMnd  ->  W  e. Toset )
128, 10, 113syl 18 . . . . . 6  |-  ( ph  ->  W  e. Toset )
13 ogrpgrp 29703 . . . . . . . 8  |-  ( W  e. oGrp  ->  W  e.  Grp )
148, 13syl 17 . . . . . . 7  |-  ( ph  ->  W  e.  Grp )
15 archirng.b . . . . . . . 8  |-  B  =  ( Base `  W
)
16 archirng.0 . . . . . . . 8  |-  .0.  =  ( 0g `  W )
1715, 16grpidcl 17450 . . . . . . 7  |-  ( W  e.  Grp  ->  .0.  e.  B )
1814, 17syl 17 . . . . . 6  |-  ( ph  ->  .0.  e.  B )
19 archirng.4 . . . . . 6  |-  ( ph  ->  Y  e.  B )
20 archirng.l . . . . . . 7  |-  .<_  =  ( le `  W )
21 archirng.i . . . . . . 7  |-  .<  =  ( lt `  W )
2215, 20, 21tltnle 29662 . . . . . 6  |-  ( ( W  e. Toset  /\  .0.  e.  B  /\  Y  e.  B
)  ->  (  .0.  .<  Y 
<->  -.  Y  .<_  .0.  )
)
2312, 18, 19, 22syl3anc 1326 . . . . 5  |-  ( ph  ->  (  .0.  .<  Y  <->  -.  Y  .<_  .0.  ) )
247, 23mpbid 222 . . . 4  |-  ( ph  ->  -.  Y  .<_  .0.  )
25 archirng.3 . . . . . 6  |-  ( ph  ->  X  e.  B )
26 archirng.x . . . . . . 7  |-  .x.  =  (.g
`  W )
2715, 16, 26mulg0 17546 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
2825, 27syl 17 . . . . 5  |-  ( ph  ->  ( 0  .x.  X
)  =  .0.  )
2928breq2d 4665 . . . 4  |-  ( ph  ->  ( Y  .<_  ( 0 
.x.  X )  <->  Y  .<_  .0.  ) )
3024, 29mtbird 315 . . 3  |-  ( ph  ->  -.  Y  .<_  ( 0 
.x.  X ) )
3125, 19jca 554 . . . 4  |-  ( ph  ->  ( X  e.  B  /\  Y  e.  B
) )
32 omndmnd 29704 . . . . . 6  |-  ( W  e. oMnd  ->  W  e.  Mnd )
338, 10, 323syl 18 . . . . 5  |-  ( ph  ->  W  e.  Mnd )
34 archirng.2 . . . . 5  |-  ( ph  ->  W  e. Archi )
3515, 16, 26, 20, 21isarchi2 29739 . . . . . 6  |-  ( ( W  e. Toset  /\  W  e. 
Mnd )  ->  ( W  e. Archi  <->  A. x  e.  B  A. y  e.  B  (  .0.  .<  x  ->  E. m  e.  NN  y  .<_  ( m  .x.  x
) ) ) )
3635biimpa 501 . . . . 5  |-  ( ( ( W  e. Toset  /\  W  e.  Mnd )  /\  W  e. Archi )  ->  A. x  e.  B  A. y  e.  B  (  .0.  .<  x  ->  E. m  e.  NN  y  .<_  ( m  .x.  x ) ) )
3712, 33, 34, 36syl21anc 1325 . . . 4  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  (  .0.  .<  x  ->  E. m  e.  NN  y  .<_  ( m  .x.  x
) ) )
38 archirng.5 . . . 4  |-  ( ph  ->  .0.  .<  X )
39 breq2 4657 . . . . . 6  |-  ( x  =  X  ->  (  .0.  .<  x  <->  .0.  .<  X ) )
40 oveq2 6658 . . . . . . . 8  |-  ( x  =  X  ->  (
m  .x.  x )  =  ( m  .x.  X ) )
4140breq2d 4665 . . . . . . 7  |-  ( x  =  X  ->  (
y  .<_  ( m  .x.  x )  <->  y  .<_  ( m  .x.  X ) ) )
4241rexbidv 3052 . . . . . 6  |-  ( x  =  X  ->  ( E. m  e.  NN  y  .<_  ( m  .x.  x )  <->  E. m  e.  NN  y  .<_  ( m 
.x.  X ) ) )
4339, 42imbi12d 334 . . . . 5  |-  ( x  =  X  ->  (
(  .0.  .<  x  ->  E. m  e.  NN  y  .<_  ( m  .x.  x ) )  <->  (  .0.  .<  X  ->  E. m  e.  NN  y  .<_  ( m  .x.  X ) ) ) )
44 breq1 4656 . . . . . . 7  |-  ( y  =  Y  ->  (
y  .<_  ( m  .x.  X )  <->  Y  .<_  ( m  .x.  X ) ) )
4544rexbidv 3052 . . . . . 6  |-  ( y  =  Y  ->  ( E. m  e.  NN  y  .<_  ( m  .x.  X )  <->  E. m  e.  NN  Y  .<_  ( m 
.x.  X ) ) )
4645imbi2d 330 . . . . 5  |-  ( y  =  Y  ->  (
(  .0.  .<  X  ->  E. m  e.  NN  y  .<_  ( m  .x.  X ) )  <->  (  .0.  .<  X  ->  E. m  e.  NN  Y  .<_  ( m  .x.  X ) ) ) )
4743, 46rspc2v 3322 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  (  .0.  .<  x  ->  E. m  e.  NN  y  .<_  ( m  .x.  x ) )  -> 
(  .0.  .<  X  ->  E. m  e.  NN  Y  .<_  ( m  .x.  X ) ) ) )
4831, 37, 38, 47syl3c 66 . . 3  |-  ( ph  ->  E. m  e.  NN  Y  .<_  ( m  .x.  X ) )
492, 4, 6, 30, 48nn0min 29567 . 2  |-  ( ph  ->  E. n  e.  NN0  ( -.  Y  .<_  ( n  .x.  X )  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
5012adantr 481 . . . . 5  |-  ( (
ph  /\  n  e.  NN0 )  ->  W  e. Toset )
5114adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  NN0 )  ->  W  e.  Grp )
52 simpr 477 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  NN0 )
5352nn0zd 11480 . . . . . 6  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  ZZ )
5425adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  NN0 )  ->  X  e.  B )
5515, 26mulgcl 17559 . . . . . 6  |-  ( ( W  e.  Grp  /\  n  e.  ZZ  /\  X  e.  B )  ->  (
n  .x.  X )  e.  B )
5651, 53, 54, 55syl3anc 1326 . . . . 5  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( n  .x.  X )  e.  B
)
5719adantr 481 . . . . 5  |-  ( (
ph  /\  n  e.  NN0 )  ->  Y  e.  B )
5815, 20, 21tltnle 29662 . . . . 5  |-  ( ( W  e. Toset  /\  (
n  .x.  X )  e.  B  /\  Y  e.  B )  ->  (
( n  .x.  X
)  .<  Y  <->  -.  Y  .<_  ( n  .x.  X
) ) )
5950, 56, 57, 58syl3anc 1326 . . . 4  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
n  .x.  X )  .<  Y  <->  -.  Y  .<_  ( n  .x.  X ) ) )
6059anbi1d 741 . . 3  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
( n  .x.  X
)  .<  Y  /\  Y  .<_  ( ( n  + 
1 )  .x.  X
) )  <->  ( -.  Y  .<_  ( n  .x.  X )  /\  Y  .<_  ( ( n  + 
1 )  .x.  X
) ) ) )
6160rexbidva 3049 . 2  |-  ( ph  ->  ( E. n  e. 
NN0  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) )  <->  E. n  e.  NN0  ( -.  Y  .<_  ( n  .x.  X )  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) ) )
6249, 61mpbird 247 1  |-  ( ph  ->  E. n  e.  NN0  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292   ZZcz 11377   Basecbs 15857   lecple 15948   0gc0g 16100   ltcplt 16941  Tosetctos 17033   Mndcmnd 17294   Grpcgrp 17422  .gcmg 17540  oMndcomnd 29697  oGrpcogrp 29698  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-omnd 29699  df-ogrp 29700  df-inftm 29732  df-archi 29733
This theorem is referenced by:  archirngz  29743  archiabllem1a  29745
  Copyright terms: Public domain W3C validator