Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul3 Structured version   Visualization version   Unicode version

Theorem omndmul3 29713
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0  |-  B  =  ( Base `  M
)
omndmul.1  |-  .<_  =  ( le `  M )
omndmul3.m  |-  .x.  =  (.g
`  M )
omndmul3.0  |-  .0.  =  ( 0g `  M )
omndmul3.o  |-  ( ph  ->  M  e. oMnd )
omndmul3.1  |-  ( ph  ->  N  e.  NN0 )
omndmul3.2  |-  ( ph  ->  P  e.  NN0 )
omndmul3.3  |-  ( ph  ->  N  <_  P )
omndmul3.4  |-  ( ph  ->  X  e.  B )
omndmul3.5  |-  ( ph  ->  .0.  .<_  X )
Assertion
Ref Expression
omndmul3  |-  ( ph  ->  ( N  .x.  X
)  .<_  ( P  .x.  X ) )

Proof of Theorem omndmul3
StepHypRef Expression
1 omndmul3.o . . 3  |-  ( ph  ->  M  e. oMnd )
2 omndmnd 29704 . . . . 5  |-  ( M  e. oMnd  ->  M  e.  Mnd )
31, 2syl 17 . . . 4  |-  ( ph  ->  M  e.  Mnd )
4 omndmul.0 . . . . 5  |-  B  =  ( Base `  M
)
5 omndmul3.0 . . . . 5  |-  .0.  =  ( 0g `  M )
64, 5mndidcl 17308 . . . 4  |-  ( M  e.  Mnd  ->  .0.  e.  B )
73, 6syl 17 . . 3  |-  ( ph  ->  .0.  e.  B )
8 omndmul3.1 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
9 omndmul3.2 . . . . 5  |-  ( ph  ->  P  e.  NN0 )
10 omndmul3.3 . . . . 5  |-  ( ph  ->  N  <_  P )
11 nn0sub 11343 . . . . . 6  |-  ( ( N  e.  NN0  /\  P  e.  NN0 )  -> 
( N  <_  P  <->  ( P  -  N )  e.  NN0 ) )
1211biimpa 501 . . . . 5  |-  ( ( ( N  e.  NN0  /\  P  e.  NN0 )  /\  N  <_  P )  ->  ( P  -  N )  e.  NN0 )
138, 9, 10, 12syl21anc 1325 . . . 4  |-  ( ph  ->  ( P  -  N
)  e.  NN0 )
14 omndmul3.4 . . . 4  |-  ( ph  ->  X  e.  B )
15 omndmul3.m . . . . 5  |-  .x.  =  (.g
`  M )
164, 15mulgnn0cl 17558 . . . 4  |-  ( ( M  e.  Mnd  /\  ( P  -  N
)  e.  NN0  /\  X  e.  B )  ->  ( ( P  -  N )  .x.  X
)  e.  B )
173, 13, 14, 16syl3anc 1326 . . 3  |-  ( ph  ->  ( ( P  -  N )  .x.  X
)  e.  B )
184, 15mulgnn0cl 17558 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
193, 8, 14, 18syl3anc 1326 . . 3  |-  ( ph  ->  ( N  .x.  X
)  e.  B )
20 omndmul3.5 . . . 4  |-  ( ph  ->  .0.  .<_  X )
21 omndmul.1 . . . . 5  |-  .<_  =  ( le `  M )
224, 21, 15, 5omndmul2 29712 . . . 4  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  ( P  -  N
)  e.  NN0 )  /\  .0.  .<_  X )  ->  .0.  .<_  ( ( P  -  N )  .x.  X ) )
231, 14, 13, 20, 22syl121anc 1331 . . 3  |-  ( ph  ->  .0.  .<_  ( ( P  -  N )  .x.  X ) )
24 eqid 2622 . . . 4  |-  ( +g  `  M )  =  ( +g  `  M )
254, 21, 24omndadd 29706 . . 3  |-  ( ( M  e. oMnd  /\  (  .0.  e.  B  /\  (
( P  -  N
)  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  /\  .0.  .<_  ( ( P  -  N )  .x.  X
) )  ->  (  .0.  ( +g  `  M
) ( N  .x.  X ) )  .<_  ( ( ( P  -  N )  .x.  X ) ( +g  `  M ) ( N 
.x.  X ) ) )
261, 7, 17, 19, 23, 25syl131anc 1339 . 2  |-  ( ph  ->  (  .0.  ( +g  `  M ) ( N 
.x.  X ) ) 
.<_  ( ( ( P  -  N )  .x.  X ) ( +g  `  M ) ( N 
.x.  X ) ) )
274, 24, 5mndlid 17311 . . 3  |-  ( ( M  e.  Mnd  /\  ( N  .x.  X )  e.  B )  -> 
(  .0.  ( +g  `  M ) ( N 
.x.  X ) )  =  ( N  .x.  X ) )
283, 19, 27syl2anc 693 . 2  |-  ( ph  ->  (  .0.  ( +g  `  M ) ( N 
.x.  X ) )  =  ( N  .x.  X ) )
294, 15, 24mulgnn0dir 17571 . . . 4  |-  ( ( M  e.  Mnd  /\  ( ( P  -  N )  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( (
( P  -  N
)  +  N ) 
.x.  X )  =  ( ( ( P  -  N )  .x.  X ) ( +g  `  M ) ( N 
.x.  X ) ) )
303, 13, 8, 14, 29syl13anc 1328 . . 3  |-  ( ph  ->  ( ( ( P  -  N )  +  N )  .x.  X
)  =  ( ( ( P  -  N
)  .x.  X )
( +g  `  M ) ( N  .x.  X
) ) )
319nn0cnd 11353 . . . . 5  |-  ( ph  ->  P  e.  CC )
328nn0cnd 11353 . . . . 5  |-  ( ph  ->  N  e.  CC )
3331, 32npcand 10396 . . . 4  |-  ( ph  ->  ( ( P  -  N )  +  N
)  =  P )
3433oveq1d 6665 . . 3  |-  ( ph  ->  ( ( ( P  -  N )  +  N )  .x.  X
)  =  ( P 
.x.  X ) )
3530, 34eqtr3d 2658 . 2  |-  ( ph  ->  ( ( ( P  -  N )  .x.  X ) ( +g  `  M ) ( N 
.x.  X ) )  =  ( P  .x.  X ) )
3626, 28, 353brtr3d 4684 1  |-  ( ph  ->  ( N  .x.  X
)  .<_  ( P  .x.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    + caddc 9939    <_ cle 10075    - cmin 10266   NN0cn0 11292   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   Mndcmnd 17294  .gcmg 17540  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-omnd 29699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator