Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul2 Structured version   Visualization version   Unicode version

Theorem omndmul2 29712
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0  |-  B  =  ( Base `  M
)
omndmul.1  |-  .<_  =  ( le `  M )
omndmul2.2  |-  .x.  =  (.g
`  M )
omndmul2.3  |-  .0.  =  ( 0g `  M )
Assertion
Ref Expression
omndmul2  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  .0.  .<_  ( N  .x.  X ) )

Proof of Theorem omndmul2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1039 . . 3  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0 )  /\  .0.  .<_  X )  <->  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0 ) )  /\  .0.  .<_  X ) )
2 anass 681 . . . 4  |-  ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 ) 
<->  ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0 ) ) )
32anbi1i 731 . . 3  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  .0.  .<_  X )  <->  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e. 
NN0 ) )  /\  .0.  .<_  X ) )
41, 3bitr4i 267 . 2  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0 )  /\  .0.  .<_  X )  <->  ( (
( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X ) )
5 simplr 792 . . 3  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  N  e.  NN0 )
6 oveq1 6657 . . . . 5  |-  ( m  =  0  ->  (
m  .x.  X )  =  ( 0  .x. 
X ) )
76breq2d 4665 . . . 4  |-  ( m  =  0  ->  (  .0.  .<_  ( m  .x.  X )  <->  .0.  .<_  ( 0 
.x.  X ) ) )
8 oveq1 6657 . . . . 5  |-  ( m  =  n  ->  (
m  .x.  X )  =  ( n  .x.  X ) )
98breq2d 4665 . . . 4  |-  ( m  =  n  ->  (  .0.  .<_  ( m  .x.  X )  <->  .0.  .<_  ( n 
.x.  X ) ) )
10 oveq1 6657 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
m  .x.  X )  =  ( ( n  +  1 )  .x.  X ) )
1110breq2d 4665 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (  .0.  .<_  ( m  .x.  X )  <->  .0.  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
12 oveq1 6657 . . . . 5  |-  ( m  =  N  ->  (
m  .x.  X )  =  ( N  .x.  X ) )
1312breq2d 4665 . . . 4  |-  ( m  =  N  ->  (  .0.  .<_  ( m  .x.  X )  <->  .0.  .<_  ( N 
.x.  X ) ) )
14 omndtos 29705 . . . . . . . 8  |-  ( M  e. oMnd  ->  M  e. Toset )
15 tospos 29658 . . . . . . . 8  |-  ( M  e. Toset  ->  M  e.  Poset )
1614, 15syl 17 . . . . . . 7  |-  ( M  e. oMnd  ->  M  e.  Poset )
17 omndmnd 29704 . . . . . . . 8  |-  ( M  e. oMnd  ->  M  e.  Mnd )
18 omndmul.0 . . . . . . . . 9  |-  B  =  ( Base `  M
)
19 omndmul2.3 . . . . . . . . 9  |-  .0.  =  ( 0g `  M )
2018, 19mndidcl 17308 . . . . . . . 8  |-  ( M  e.  Mnd  ->  .0.  e.  B )
2117, 20syl 17 . . . . . . 7  |-  ( M  e. oMnd  ->  .0.  e.  B
)
22 omndmul.1 . . . . . . . 8  |-  .<_  =  ( le `  M )
2318, 22posref 16951 . . . . . . 7  |-  ( ( M  e.  Poset  /\  .0.  e.  B )  ->  .0.  .<_  .0.  )
2416, 21, 23syl2anc 693 . . . . . 6  |-  ( M  e. oMnd  ->  .0.  .<_  .0.  )
2524ad3antrrr 766 . . . . 5  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  .0.  .<_  .0.  )
26 omndmul2.2 . . . . . . 7  |-  .x.  =  (.g
`  M )
2718, 19, 26mulg0 17546 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
2827ad3antlr 767 . . . . 5  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  ( 0 
.x.  X )  =  .0.  )
2925, 28breqtrrd 4681 . . . 4  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  .0.  .<_  ( 0 
.x.  X ) )
3016ad5antr 770 . . . . 5  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  M  e.  Poset
)
3117ad5antr 770 . . . . . . 7  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  M  e.  Mnd )
3231, 20syl 17 . . . . . 6  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  .0.  e.  B )
33 simplr 792 . . . . . . 7  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  n  e.  NN0 )
34 simp-5r 809 . . . . . . 7  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  X  e.  B )
3518, 26mulgnn0cl 17558 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  n  e.  NN0  /\  X  e.  B )  ->  (
n  .x.  X )  e.  B )
3631, 33, 34, 35syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  ( n  .x.  X )  e.  B
)
37 simpr32 1152 . . . . . . . . . 10  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0  /\  (  .0.  .<_  X  /\  n  e.  NN0  /\  .0.  .<_  ( n  .x.  X ) ) ) )  ->  n  e.  NN0 )
38 1nn0 11308 . . . . . . . . . . 11  |-  1  e.  NN0
3938a1i 11 . . . . . . . . . 10  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0  /\  (  .0.  .<_  X  /\  n  e.  NN0  /\  .0.  .<_  ( n  .x.  X ) ) ) )  -> 
1  e.  NN0 )
4037, 39nn0addcld 11355 . . . . . . . . 9  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0  /\  (  .0.  .<_  X  /\  n  e.  NN0  /\  .0.  .<_  ( n  .x.  X ) ) ) )  -> 
( n  +  1 )  e.  NN0 )
41403anassrs 1290 . . . . . . . 8  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  (  .0. 
.<_  X  /\  n  e. 
NN0  /\  .0.  .<_  ( n 
.x.  X ) ) )  ->  ( n  +  1 )  e. 
NN0 )
42413anassrs 1290 . . . . . . 7  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  ( n  +  1 )  e. 
NN0 )
4318, 26mulgnn0cl 17558 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( n  +  1
)  e.  NN0  /\  X  e.  B )  ->  ( ( n  + 
1 )  .x.  X
)  e.  B )
4431, 42, 34, 43syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  ( (
n  +  1 ) 
.x.  X )  e.  B )
4532, 36, 443jca 1242 . . . . 5  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  (  .0.  e.  B  /\  (
n  .x.  X )  e.  B  /\  (
( n  +  1 )  .x.  X )  e.  B ) )
46 simpr 477 . . . . 5  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  .0.  .<_  ( n 
.x.  X ) )
47 simp-4l 806 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  M  e. oMnd )
4817ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  M  e.  Mnd )
4948, 20syl 17 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  .0.  e.  B )
50 simp-4r 807 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  X  e.  B )
51 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
5248, 51, 50, 35syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
n  .x.  X )  e.  B )
53 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  .0.  .<_  X )
54 eqid 2622 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
5518, 22, 54omndadd 29706 . . . . . . . 8  |-  ( ( M  e. oMnd  /\  (  .0.  e.  B  /\  X  e.  B  /\  (
n  .x.  X )  e.  B )  /\  .0.  .<_  X )  ->  (  .0.  ( +g  `  M
) ( n  .x.  X ) )  .<_  ( X ( +g  `  M
) ( n  .x.  X ) ) )
5647, 49, 50, 52, 53, 55syl131anc 1339 . . . . . . 7  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (  .0.  ( +g  `  M
) ( n  .x.  X ) )  .<_  ( X ( +g  `  M
) ( n  .x.  X ) ) )
5718, 54, 19mndlid 17311 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( n  .x.  X )  e.  B )  -> 
(  .0.  ( +g  `  M ) ( n 
.x.  X ) )  =  ( n  .x.  X ) )
5848, 52, 57syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (  .0.  ( +g  `  M
) ( n  .x.  X ) )  =  ( n  .x.  X
) )
5938a1i 11 . . . . . . . . 9  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  1  e.  NN0 )
6018, 26, 54mulgnn0dir 17571 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( 1  e.  NN0  /\  n  e.  NN0  /\  X  e.  B )
)  ->  ( (
1  +  n ) 
.x.  X )  =  ( ( 1  .x. 
X ) ( +g  `  M ) ( n 
.x.  X ) ) )
6148, 59, 51, 50, 60syl13anc 1328 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
( 1  +  n
)  .x.  X )  =  ( ( 1 
.x.  X ) ( +g  `  M ) ( n  .x.  X
) ) )
62 1cnd 10056 . . . . . . . . . . 11  |-  ( ( ( M  e. oMnd  /\  X  e.  B )  /\  ( N  e.  NN0  /\  .0.  .<_  X  /\  n  e.  NN0 ) )  -> 
1  e.  CC )
63 simpr3 1069 . . . . . . . . . . . 12  |-  ( ( ( M  e. oMnd  /\  X  e.  B )  /\  ( N  e.  NN0  /\  .0.  .<_  X  /\  n  e.  NN0 ) )  ->  n  e.  NN0 )
6463nn0cnd 11353 . . . . . . . . . . 11  |-  ( ( ( M  e. oMnd  /\  X  e.  B )  /\  ( N  e.  NN0  /\  .0.  .<_  X  /\  n  e.  NN0 ) )  ->  n  e.  CC )
6562, 64addcomd 10238 . . . . . . . . . 10  |-  ( ( ( M  e. oMnd  /\  X  e.  B )  /\  ( N  e.  NN0  /\  .0.  .<_  X  /\  n  e.  NN0 ) )  -> 
( 1  +  n
)  =  ( n  +  1 ) )
66653anassrs 1290 . . . . . . . . 9  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
1  +  n )  =  ( n  + 
1 ) )
6766oveq1d 6665 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
( 1  +  n
)  .x.  X )  =  ( ( n  +  1 )  .x.  X ) )
6818, 26mulg1 17548 . . . . . . . . . 10  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
6950, 68syl 17 . . . . . . . . 9  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
1  .x.  X )  =  X )
7069oveq1d 6665 . . . . . . . 8  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
( 1  .x.  X
) ( +g  `  M
) ( n  .x.  X ) )  =  ( X ( +g  `  M ) ( n 
.x.  X ) ) )
7161, 67, 703eqtr3rd 2665 . . . . . . 7  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  ( X ( +g  `  M
) ( n  .x.  X ) )  =  ( ( n  + 
1 )  .x.  X
) )
7256, 58, 713brtr3d 4684 . . . . . 6  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  ->  (
n  .x.  X )  .<_  ( ( n  + 
1 )  .x.  X
) )
7372adantr 481 . . . . 5  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  ( n  .x.  X )  .<_  ( ( n  +  1 ) 
.x.  X ) )
7418, 22postr 16953 . . . . . 6  |-  ( ( M  e.  Poset  /\  (  .0.  e.  B  /\  (
n  .x.  X )  e.  B  /\  (
( n  +  1 )  .x.  X )  e.  B ) )  ->  ( (  .0. 
.<_  ( n  .x.  X
)  /\  ( n  .x.  X )  .<_  ( ( n  +  1 ) 
.x.  X ) )  ->  .0.  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
7574imp 445 . . . . 5  |-  ( ( ( M  e.  Poset  /\  (  .0.  e.  B  /\  ( n  .x.  X
)  e.  B  /\  ( ( n  + 
1 )  .x.  X
)  e.  B ) )  /\  (  .0. 
.<_  ( n  .x.  X
)  /\  ( n  .x.  X )  .<_  ( ( n  +  1 ) 
.x.  X ) ) )  ->  .0.  .<_  ( ( n  +  1 ) 
.x.  X ) )
7630, 45, 46, 73, 75syl22anc 1327 . . . 4  |-  ( ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  n  e.  NN0 )  /\  .0.  .<_  ( n  .x.  X ) )  ->  .0.  .<_  ( ( n  +  1 ) 
.x.  X ) )
777, 9, 11, 13, 29, 76nn0indd 11474 . . 3  |-  ( ( ( ( ( M  e. oMnd  /\  X  e.  B )  /\  N  e.  NN0 )  /\  .0.  .<_  X )  /\  N  e.  NN0 )  ->  .0.  .<_  ( N  .x.  X ) )
785, 77mpdan 702 . 2  |-  ( ( ( ( M  e. oMnd  /\  X  e.  B
)  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  .0.  .<_  ( N 
.x.  X ) )
794, 78sylbi 207 1  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  N  e.  NN0 )  /\  .0.  .<_  X )  ->  .0.  .<_  ( N  .x.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   Posetcpo 16940  Tosetctos 17033   Mndcmnd 17294  .gcmg 17540  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-omnd 29699
This theorem is referenced by:  omndmul3  29713
  Copyright terms: Public domain W3C validator