Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsval Structured version   Visualization version   Unicode version

Theorem omsval 30355
Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsval  |-  ( R  e.  _V  ->  (toOMeas `  R )  =  ( a  e.  ~P U. dom  R  |-> inf ( ran  (
x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
Distinct variable group:    x, a, y, z, R

Proof of Theorem omsval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-oms 30354 . . 3  |- toOMeas  =  ( r  e.  _V  |->  ( a  e.  ~P U. dom  r  |-> inf ( ran  ( x  e.  {
z  e.  ~P dom  r  |  ( a  C_ 
U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
21a1i 11 . 2  |-  ( R  e.  _V  -> toOMeas  =  ( r  e.  _V  |->  ( a  e.  ~P U. dom  r  |-> inf ( ran  ( x  e.  {
z  e.  ~P dom  r  |  ( a  C_ 
U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) ) )
3 dmeq 5324 . . . . . 6  |-  ( r  =  R  ->  dom  r  =  dom  R )
43unieqd 4446 . . . . 5  |-  ( r  =  R  ->  U. dom  r  =  U. dom  R
)
54pweqd 4163 . . . 4  |-  ( r  =  R  ->  ~P U.
dom  r  =  ~P U.
dom  R )
63pweqd 4163 . . . . . . . 8  |-  ( r  =  R  ->  ~P dom  r  =  ~P dom  R )
7 rabeq 3192 . . . . . . . 8  |-  ( ~P
dom  r  =  ~P dom  R  ->  { z  e.  ~P dom  r  |  ( a  C_  U. z  /\  z  ~<_  om ) }  =  { z  e.  ~P dom  R  | 
( a  C_  U. z  /\  z  ~<_  om ) } )
86, 7syl 17 . . . . . . 7  |-  ( r  =  R  ->  { z  e.  ~P dom  r  |  ( a  C_  U. z  /\  z  ~<_  om ) }  =  {
z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) } )
9 simpl 473 . . . . . . . . 9  |-  ( ( r  =  R  /\  y  e.  x )  ->  r  =  R )
109fveq1d 6193 . . . . . . . 8  |-  ( ( r  =  R  /\  y  e.  x )  ->  ( r `  y
)  =  ( R `
 y ) )
1110esumeq2dv 30100 . . . . . . 7  |-  ( r  =  R  -> Σ* y  e.  x
( r `  y
)  = Σ* y  e.  x
( R `  y
) )
128, 11mpteq12dv 4733 . . . . . 6  |-  ( r  =  R  ->  (
x  e.  { z  e.  ~P dom  r  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) )  =  ( x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) )
1312rneqd 5353 . . . . 5  |-  ( r  =  R  ->  ran  ( x  e.  { z  e.  ~P dom  r  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) )  =  ran  ( x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) )
1413infeq1d 8383 . . . 4  |-  ( r  =  R  -> inf ( ran  ( x  e.  {
z  e.  ~P dom  r  |  ( a  C_ 
U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) ) ,  ( 0 [,] +oo ) ,  <  )  = inf ( ran  ( x  e.  {
z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) )
155, 14mpteq12dv 4733 . . 3  |-  ( r  =  R  ->  (
a  e.  ~P U. dom  r  |-> inf ( ran  ( x  e.  {
z  e.  ~P dom  r  |  ( a  C_ 
U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) )  =  ( a  e.  ~P U.
dom  R  |-> inf ( ran  ( x  e.  {
z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
1615adantl 482 . 2  |-  ( ( R  e.  _V  /\  r  =  R )  ->  ( a  e.  ~P U.
dom  r  |-> inf ( ran  ( x  e.  {
z  e.  ~P dom  r  |  ( a  C_ 
U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( r `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) )  =  ( a  e.  ~P U.
dom  R  |-> inf ( ran  ( x  e.  {
z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
17 id 22 . 2  |-  ( R  e.  _V  ->  R  e.  _V )
18 dmexg 7097 . . 3  |-  ( R  e.  _V  ->  dom  R  e.  _V )
19 uniexg 6955 . . 3  |-  ( dom 
R  e.  _V  ->  U.
dom  R  e.  _V )
20 pwexg 4850 . . 3  |-  ( U. dom  R  e.  _V  ->  ~P
U. dom  R  e.  _V )
21 mptexg 6484 . . 3  |-  ( ~P
U. dom  R  e.  _V  ->  ( a  e. 
~P U. dom  R  |-> inf ( ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( a 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) )  e. 
_V )
2218, 19, 20, 214syl 19 . 2  |-  ( R  e.  _V  ->  (
a  e.  ~P U. dom  R  |-> inf ( ran  (
x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) )  e. 
_V )
232, 16, 17, 22fvmptd 6288 1  |-  ( R  e.  _V  ->  (toOMeas `  R )  =  ( a  e.  ~P U. dom  R  |-> inf ( ran  (
x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953  infcinf 8347   0cc0 9936   +oocpnf 10071    < clt 10074   [,]cicc 12178  Σ*cesum 30089  toOMeascoms 30353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-sup 8348  df-inf 8349  df-esum 30090  df-oms 30354
This theorem is referenced by:  omsfval  30356  omsf  30358
  Copyright terms: Public domain W3C validator