Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsfval Structured version   Visualization version   Unicode version

Theorem omsfval 30356
Description: Value of the outer measure evaluated for a given set 
A. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsfval  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  ( (toOMeas `  R
) `  A )  = inf ( ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x ( R `  y ) ) ,  ( 0 [,] +oo ) ,  <  ) )
Distinct variable groups:    x, y,
z, R    x, A, y, z    x, Q, y, z    x, V, y, z

Proof of Theorem omsfval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . 4  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  R : Q --> ( 0 [,] +oo ) )
2 simp1 1061 . . . 4  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  Q  e.  V
)
3 fex 6490 . . . 4  |-  ( ( R : Q --> ( 0 [,] +oo )  /\  Q  e.  V )  ->  R  e.  _V )
41, 2, 3syl2anc 693 . . 3  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  R  e.  _V )
5 omsval 30355 . . 3  |-  ( R  e.  _V  ->  (toOMeas `  R )  =  ( a  e.  ~P U. dom  R  |-> inf ( ran  (
x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
64, 5syl 17 . 2  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  (toOMeas `  R )  =  ( a  e. 
~P U. dom  R  |-> inf ( ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( a 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
7 simpr 477 . . . . . . . 8  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  ->  a  =  A )
87sseq1d 3632 . . . . . . 7  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  ->  ( a  C_ 
U. z  <->  A  C_  U. z
) )
98anbi1d 741 . . . . . 6  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  ->  ( (
a  C_  U. z  /\  z  ~<_  om )  <->  ( A  C_  U. z  /\  z  ~<_  om )
) )
109rabbidv 3189 . . . . 5  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  ->  { z  e.  ~P dom  R  | 
( a  C_  U. z  /\  z  ~<_  om ) }  =  { z  e.  ~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) } )
1110mpteq1d 4738 . . . 4  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  ->  ( x  e.  { z  e.  ~P dom  R  |  ( a 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) )  =  ( x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) )
1211rneqd 5353 . . 3  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  ->  ran  ( x  e.  { z  e. 
~P dom  R  | 
( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x ( R `  y ) )  =  ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) )
1312infeq1d 8383 . 2  |-  ( ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  /\  a  =  A )  -> inf ( ran  ( x  e.  { z  e.  ~P dom  R  |  ( a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  )  = inf ( ran  ( x  e.  {
z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  ) )
14 simp3 1063 . . . 4  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  A  C_  U. Q
)
15 fdm 6051 . . . . . 6  |-  ( R : Q --> ( 0 [,] +oo )  ->  dom  R  =  Q )
16153ad2ant2 1083 . . . . 5  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  dom  R  =  Q )
1716unieqd 4446 . . . 4  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  U. dom  R  = 
U. Q )
1814, 17sseqtr4d 3642 . . 3  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  A  C_  U. dom  R )
19 elex 3212 . . . . . 6  |-  ( Q  e.  V  ->  Q  e.  _V )
20 uniexb 6973 . . . . . . 7  |-  ( Q  e.  _V  <->  U. Q  e. 
_V )
2120biimpi 206 . . . . . 6  |-  ( Q  e.  _V  ->  U. Q  e.  _V )
222, 19, 213syl 18 . . . . 5  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  U. Q  e.  _V )
23 ssexg 4804 . . . . 5  |-  ( ( A  C_  U. Q  /\  U. Q  e.  _V )  ->  A  e.  _V )
2414, 22, 23syl2anc 693 . . . 4  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  A  e.  _V )
25 elpwg 4166 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  ~P U. dom  R  <-> 
A  C_  U. dom  R
) )
2624, 25syl 17 . . 3  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  ( A  e. 
~P U. dom  R  <->  A  C_  U. dom  R ) )
2718, 26mpbird 247 . 2  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  A  e.  ~P U.
dom  R )
28 xrltso 11974 . . . 4  |-  <  Or  RR*
29 iccssxr 12256 . . . . 5  |-  ( 0 [,] +oo )  C_  RR*
30 soss 5053 . . . . 5  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  (  <  Or  RR* 
->  <  Or  ( 0 [,] +oo ) ) )
3129, 30ax-mp 5 . . . 4  |-  (  < 
Or  RR*  ->  <  Or  (
0 [,] +oo )
)
3228, 31mp1i 13 . . 3  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  <  Or  (
0 [,] +oo )
)
3332infexd 8389 . 2  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  -> inf ( ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x
( R `  y
) ) ,  ( 0 [,] +oo ) ,  <  )  e.  _V )
346, 13, 27, 33fvmptd 6288 1  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  ( (toOMeas `  R
) `  A )  = inf ( ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x ( R `  y ) ) ,  ( 0 [,] +oo ) ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953  infcinf 8347   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,]cicc 12178  Σ*cesum 30089  toOMeascoms 30353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-icc 12182  df-esum 30090  df-oms 30354
This theorem is referenced by:  omsf  30358  oms0  30359  omsmon  30360  omssubaddlem  30361  omssubadd  30362
  Copyright terms: Public domain W3C validator