MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssmin Structured version   Visualization version   Unicode version

Theorem onssmin 6997
Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.)
Assertion
Ref Expression
onssmin  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  C_  y
)
Distinct variable group:    x, y, A

Proof of Theorem onssmin
StepHypRef Expression
1 onint 6995 . 2  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
2 intss1 4492 . . 3  |-  ( y  e.  A  ->  |^| A  C_  y )
32rgen 2922 . 2  |-  A. y  e.  A  |^| A  C_  y
4 sseq1 3626 . . . 4  |-  ( x  =  |^| A  -> 
( x  C_  y  <->  |^| A  C_  y )
)
54ralbidv 2986 . . 3  |-  ( x  =  |^| A  -> 
( A. y  e.  A  x  C_  y  <->  A. y  e.  A  |^| A  C_  y ) )
65rspcev 3309 . 2  |-  ( (
|^| A  e.  A  /\  A. y  e.  A  |^| A  C_  y )  ->  E. x  e.  A  A. y  e.  A  x  C_  y )
71, 3, 6sylancl 694 1  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  C_  y
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   |^|cint 4475   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator