Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnregcld Structured version   Visualization version   Unicode version

Theorem opnregcld 32325
Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1  |-  X  = 
U. J
Assertion
Ref Expression
opnregcld  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  (
( int `  J
) `  A )
)  =  A  <->  E. o  e.  J  A  =  ( ( cls `  J
) `  o )
) )
Distinct variable groups:    A, o    o, J    o, X

Proof of Theorem opnregcld
StepHypRef Expression
1 opnregcld.1 . . . . 5  |-  X  = 
U. J
21ntropn 20853 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
3 eqcom 2629 . . . . 5  |-  ( ( ( cls `  J
) `  ( ( int `  J ) `  A ) )  =  A  <->  A  =  (
( cls `  J
) `  ( ( int `  J ) `  A ) ) )
43biimpi 206 . . . 4  |-  ( ( ( cls `  J
) `  ( ( int `  J ) `  A ) )  =  A  ->  A  =  ( ( cls `  J
) `  ( ( int `  J ) `  A ) ) )
5 fveq2 6191 . . . . . 6  |-  ( o  =  ( ( int `  J ) `  A
)  ->  ( ( cls `  J ) `  o )  =  ( ( cls `  J
) `  ( ( int `  J ) `  A ) ) )
65eqeq2d 2632 . . . . 5  |-  ( o  =  ( ( int `  J ) `  A
)  ->  ( A  =  ( ( cls `  J ) `  o
)  <->  A  =  (
( cls `  J
) `  ( ( int `  J ) `  A ) ) ) )
76rspcev 3309 . . . 4  |-  ( ( ( ( int `  J
) `  A )  e.  J  /\  A  =  ( ( cls `  J
) `  ( ( int `  J ) `  A ) ) )  ->  E. o  e.  J  A  =  ( ( cls `  J ) `  o ) )
82, 4, 7syl2an 494 . . 3  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( ( cls `  J
) `  ( ( int `  J ) `  A ) )  =  A )  ->  E. o  e.  J  A  =  ( ( cls `  J
) `  o )
)
98ex 450 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  (
( int `  J
) `  A )
)  =  A  ->  E. o  e.  J  A  =  ( ( cls `  J ) `  o ) ) )
10 simpl 473 . . . . . . . 8  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  J  e.  Top )
111eltopss 20712 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  X )
121clsss3 20863 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  o  C_  X )  -> 
( ( cls `  J
) `  o )  C_  X )
1311, 12syldan 487 . . . . . . . 8  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( cls `  J
) `  o )  C_  X )
141ntrss2 20861 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( ( cls `  J
) `  o )  C_  X )  ->  (
( int `  J
) `  ( ( cls `  J ) `  o ) )  C_  ( ( cls `  J
) `  o )
)
1513, 14syldan 487 . . . . . . . 8  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( int `  J
) `  ( ( cls `  J ) `  o ) )  C_  ( ( cls `  J
) `  o )
)
161clsss 20858 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( ( cls `  J
) `  o )  C_  X  /\  ( ( int `  J ) `
 ( ( cls `  J ) `  o
) )  C_  (
( cls `  J
) `  o )
)  ->  ( ( cls `  J ) `  ( ( int `  J
) `  ( ( cls `  J ) `  o ) ) ) 
C_  ( ( cls `  J ) `  (
( cls `  J
) `  o )
) )
1710, 13, 15, 16syl3anc 1326 . . . . . . 7  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( cls `  J
) `  ( ( int `  J ) `  ( ( cls `  J
) `  o )
) )  C_  (
( cls `  J
) `  ( ( cls `  J ) `  o ) ) )
181clsidm 20871 . . . . . . . 8  |-  ( ( J  e.  Top  /\  o  C_  X )  -> 
( ( cls `  J
) `  ( ( cls `  J ) `  o ) )  =  ( ( cls `  J
) `  o )
)
1911, 18syldan 487 . . . . . . 7  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( cls `  J
) `  ( ( cls `  J ) `  o ) )  =  ( ( cls `  J
) `  o )
)
2017, 19sseqtrd 3641 . . . . . 6  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( cls `  J
) `  ( ( int `  J ) `  ( ( cls `  J
) `  o )
) )  C_  (
( cls `  J
) `  o )
)
211ntrss3 20864 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( ( cls `  J
) `  o )  C_  X )  ->  (
( int `  J
) `  ( ( cls `  J ) `  o ) )  C_  X )
2213, 21syldan 487 . . . . . . 7  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( int `  J
) `  ( ( cls `  J ) `  o ) )  C_  X )
23 simpr 477 . . . . . . . 8  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  e.  J )
241sscls 20860 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  o  C_  X )  -> 
o  C_  ( ( cls `  J ) `  o ) )
2511, 24syldan 487 . . . . . . . 8  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  ( ( cls `  J ) `  o ) )
261ssntr 20862 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  ( ( cls `  J
) `  o )  C_  X )  /\  (
o  e.  J  /\  o  C_  ( ( cls `  J ) `  o
) ) )  -> 
o  C_  ( ( int `  J ) `  ( ( cls `  J
) `  o )
) )
2710, 13, 23, 25, 26syl22anc 1327 . . . . . . 7  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  ( ( int `  J ) `  ( ( cls `  J
) `  o )
) )
281clsss 20858 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  ( ( cls `  J ) `  o ) )  C_  X  /\  o  C_  (
( int `  J
) `  ( ( cls `  J ) `  o ) ) )  ->  ( ( cls `  J ) `  o
)  C_  ( ( cls `  J ) `  ( ( int `  J
) `  ( ( cls `  J ) `  o ) ) ) )
2910, 22, 27, 28syl3anc 1326 . . . . . 6  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( cls `  J
) `  o )  C_  ( ( cls `  J
) `  ( ( int `  J ) `  ( ( cls `  J
) `  o )
) ) )
3020, 29eqssd 3620 . . . . 5  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( ( cls `  J
) `  ( ( int `  J ) `  ( ( cls `  J
) `  o )
) )  =  ( ( cls `  J
) `  o )
)
3130adantlr 751 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  o  e.  J
)  ->  ( ( cls `  J ) `  ( ( int `  J
) `  ( ( cls `  J ) `  o ) ) )  =  ( ( cls `  J ) `  o
) )
32 fveq2 6191 . . . . . 6  |-  ( A  =  ( ( cls `  J ) `  o
)  ->  ( ( int `  J ) `  A )  =  ( ( int `  J
) `  ( ( cls `  J ) `  o ) ) )
3332fveq2d 6195 . . . . 5  |-  ( A  =  ( ( cls `  J ) `  o
)  ->  ( ( cls `  J ) `  ( ( int `  J
) `  A )
)  =  ( ( cls `  J ) `
 ( ( int `  J ) `  (
( cls `  J
) `  o )
) ) )
34 id 22 . . . . 5  |-  ( A  =  ( ( cls `  J ) `  o
)  ->  A  =  ( ( cls `  J
) `  o )
)
3533, 34eqeq12d 2637 . . . 4  |-  ( A  =  ( ( cls `  J ) `  o
)  ->  ( (
( cls `  J
) `  ( ( int `  J ) `  A ) )  =  A  <->  ( ( cls `  J ) `  (
( int `  J
) `  ( ( cls `  J ) `  o ) ) )  =  ( ( cls `  J ) `  o
) ) )
3631, 35syl5ibrcom 237 . . 3  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  o  e.  J
)  ->  ( A  =  ( ( cls `  J ) `  o
)  ->  ( ( cls `  J ) `  ( ( int `  J
) `  A )
)  =  A ) )
3736rexlimdva 3031 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( E. o  e.  J  A  =  ( ( cls `  J
) `  o )  ->  ( ( cls `  J
) `  ( ( int `  J ) `  A ) )  =  A ) )
389, 37impbid 202 1  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( ( cls `  J ) `  (
( int `  J
) `  A )
)  =  A  <->  E. o  e.  J  A  =  ( ( cls `  J
) `  o )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   U.cuni 4436   ` cfv 5888   Topctop 20698   intcnt 20821   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator