MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprpiece1res1 Structured version   Visualization version   Unicode version

Theorem oprpiece1res1 22750
Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
oprpiece1.1  |-  A  e.  RR
oprpiece1.2  |-  B  e.  RR
oprpiece1.3  |-  A  <_  B
oprpiece1.4  |-  R  e. 
_V
oprpiece1.5  |-  S  e. 
_V
oprpiece1.6  |-  K  e.  ( A [,] B
)
oprpiece1.7  |-  F  =  ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
oprpiece1.8  |-  G  =  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  R )
Assertion
Ref Expression
oprpiece1res1  |-  ( F  |`  ( ( A [,] K )  X.  C
) )  =  G
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, K, y
Allowed substitution hints:    R( x, y)    S( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprpiece1res1
StepHypRef Expression
1 oprpiece1.1 . . . . . 6  |-  A  e.  RR
21rexri 10097 . . . . 5  |-  A  e. 
RR*
3 oprpiece1.2 . . . . . 6  |-  B  e.  RR
43rexri 10097 . . . . 5  |-  B  e. 
RR*
5 oprpiece1.3 . . . . 5  |-  A  <_  B
6 lbicc2 12288 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
72, 4, 5, 6mp3an 1424 . . . 4  |-  A  e.  ( A [,] B
)
8 oprpiece1.6 . . . 4  |-  K  e.  ( A [,] B
)
9 iccss2 12244 . . . 4  |-  ( ( A  e.  ( A [,] B )  /\  K  e.  ( A [,] B ) )  -> 
( A [,] K
)  C_  ( A [,] B ) )
107, 8, 9mp2an 708 . . 3  |-  ( A [,] K )  C_  ( A [,] B )
11 ssid 3624 . . 3  |-  C  C_  C
12 resmpt2 6758 . . 3  |-  ( ( ( A [,] K
)  C_  ( A [,] B )  /\  C  C_  C )  ->  (
( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )  |`  ( ( A [,] K )  X.  C
) )  =  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) ) )
1310, 11, 12mp2an 708 . 2  |-  ( ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )  |`  ( ( A [,] K )  X.  C ) )  =  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
14 oprpiece1.7 . . 3  |-  F  =  ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
1514reseq1i 5392 . 2  |-  ( F  |`  ( ( A [,] K )  X.  C
) )  =  ( ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )  |`  ( ( A [,] K )  X.  C
) )
16 oprpiece1.8 . . 3  |-  G  =  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  R )
17 elicc1 12219 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( K  e.  ( A [,] B )  <->  ( K  e.  RR*  /\  A  <_  K  /\  K  <_  B
) ) )
182, 4, 17mp2an 708 . . . . . . . . 9  |-  ( K  e.  ( A [,] B )  <->  ( K  e.  RR*  /\  A  <_  K  /\  K  <_  B
) )
1918simp1bi 1076 . . . . . . . 8  |-  ( K  e.  ( A [,] B )  ->  K  e.  RR* )
208, 19ax-mp 5 . . . . . . 7  |-  K  e. 
RR*
21 iccleub 12229 . . . . . . 7  |-  ( ( A  e.  RR*  /\  K  e.  RR*  /\  x  e.  ( A [,] K
) )  ->  x  <_  K )
222, 20, 21mp3an12 1414 . . . . . 6  |-  ( x  e.  ( A [,] K )  ->  x  <_  K )
2322iftrued 4094 . . . . 5  |-  ( x  e.  ( A [,] K )  ->  if ( x  <_  K ,  R ,  S )  =  R )
2423adantr 481 . . . 4  |-  ( ( x  e.  ( A [,] K )  /\  y  e.  C )  ->  if ( x  <_  K ,  R ,  S )  =  R )
2524mpt2eq3ia 6720 . . 3  |-  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S )
)  =  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  R )
2616, 25eqtr4i 2647 . 2  |-  G  =  ( x  e.  ( A [,] K ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
2713, 15, 263eqtr4i 2654 1  |-  ( F  |`  ( ( A [,] K )  X.  C
) )  =  G
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ifcif 4086   class class class wbr 4653    X. cxp 5112    |` cres 5116  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   RR*cxr 10073    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator