MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccvx Structured version   Visualization version   Unicode version

Theorem icccvx 22749
Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
icccvx  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B
) ) )

Proof of Theorem icccvx
StepHypRef Expression
1 iccss2 12244 . . . . . . 7  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( C [,] D
)  C_  ( A [,] B ) )
21adantl 482 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
323adantr3 1222 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
43adantr 481 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  <  D )  -> 
( C [,] D
)  C_  ( A [,] B ) )
5 iccssre 12255 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
65sselda 3603 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,] B ) )  ->  C  e.  RR )
76adantrr 753 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  C  e.  RR )
85sselda 3603 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  ( A [,] B ) )  ->  D  e.  RR )
98adantrl 752 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  D  e.  RR )
107, 9jca 554 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( C  e.  RR  /\  D  e.  RR ) )
11103adantr3 1222 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( C  e.  RR  /\  D  e.  RR ) )
12 simpr3 1069 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  T  e.  ( 0 [,] 1
) )
1311, 12jca 554 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( C  e.  RR  /\  D  e.  RR )  /\  T  e.  ( 0 [,] 1 ) ) )
14 lincmb01cmp 12315 . . . . . . . . 9  |-  ( ( ( C  e.  RR  /\  D  e.  RR  /\  C  <  D )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  e.  ( C [,] D ) )
1514ex 450 . . . . . . . 8  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  C  <  D )  ->  ( T  e.  ( 0 [,] 1 )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( C [,] D ) ) )
16153expa 1265 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  C  <  D
)  ->  ( T  e.  ( 0 [,] 1
)  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( C [,] D
) ) )
1716imp 445 . . . . . 6  |-  ( ( ( ( C  e.  RR  /\  D  e.  RR )  /\  C  <  D )  /\  T  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( C [,] D ) )
1817an32s 846 . . . . 5  |-  ( ( ( ( C  e.  RR  /\  D  e.  RR )  /\  T  e.  ( 0 [,] 1
) )  /\  C  <  D )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( C [,] D ) )
1913, 18sylan 488 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  <  D )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( C [,] D ) )
204, 19sseldd 3604 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  <  D )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B ) )
21 oveq2 6658 . . . . . 6  |-  ( C  =  D  ->  (
( 1  -  T
)  x.  C )  =  ( ( 1  -  T )  x.  D ) )
2221oveq1d 6665 . . . . 5  |-  ( C  =  D  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  =  ( ( ( 1  -  T )  x.  D )  +  ( T  x.  D
) ) )
23 unitssre 12319 . . . . . . . . . 10  |-  ( 0 [,] 1 )  C_  RR
2423sseli 3599 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
2524recnd 10068 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  CC )
2625ad2antll 765 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  CC )
278recnd 10068 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  ( A [,] B ) )  ->  D  e.  CC )
2827adantrr 753 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  ->  D  e.  CC )
29 ax-1cn 9994 . . . . . . . . . . 11  |-  1  e.  CC
30 npcan 10290 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  T )  +  T
)  =  1 )
3129, 30mpan 706 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
( 1  -  T
)  +  T )  =  1 )
3231adantr 481 . . . . . . . . 9  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( 1  -  T )  +  T
)  =  1 )
3332oveq1d 6665 . . . . . . . 8  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  +  T )  x.  D
)  =  ( 1  x.  D ) )
34 subcl 10280 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
3529, 34mpan 706 . . . . . . . . . 10  |-  ( T  e.  CC  ->  (
1  -  T )  e.  CC )
3635ancri 575 . . . . . . . . 9  |-  ( T  e.  CC  ->  (
( 1  -  T
)  e.  CC  /\  T  e.  CC )
)
37 adddir 10031 . . . . . . . . . 10  |-  ( ( ( 1  -  T
)  e.  CC  /\  T  e.  CC  /\  D  e.  CC )  ->  (
( ( 1  -  T )  +  T
)  x.  D )  =  ( ( ( 1  -  T )  x.  D )  +  ( T  x.  D
) ) )
38373expa 1265 . . . . . . . . 9  |-  ( ( ( ( 1  -  T )  e.  CC  /\  T  e.  CC )  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  +  T )  x.  D )  =  ( ( ( 1  -  T )  x.  D
)  +  ( T  x.  D ) ) )
3936, 38sylan 488 . . . . . . . 8  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  +  T )  x.  D
)  =  ( ( ( 1  -  T
)  x.  D )  +  ( T  x.  D ) ) )
40 mulid2 10038 . . . . . . . . 9  |-  ( D  e.  CC  ->  (
1  x.  D )  =  D )
4140adantl 482 . . . . . . . 8  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( 1  x.  D
)  =  D )
4233, 39, 413eqtr3d 2664 . . . . . . 7  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( ( ( 1  -  T )  x.  D )  +  ( T  x.  D ) )  =  D )
4326, 28, 42syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  T )  x.  D )  +  ( T  x.  D ) )  =  D )
44433adantr1 1220 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( ( 1  -  T )  x.  D
)  +  ( T  x.  D ) )  =  D )
4522, 44sylan9eqr 2678 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  =  D )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  =  D )
46 simplr2 1104 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  =  D )  ->  D  e.  ( A [,] B ) )
4745, 46eqeltrd 2701 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  C  =  D )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B ) )
48 iccss2 12244 . . . . . . . 8  |-  ( ( D  e.  ( A [,] B )  /\  C  e.  ( A [,] B ) )  -> 
( D [,] C
)  C_  ( A [,] B ) )
4948adantl 482 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  ( A [,] B
)  /\  C  e.  ( A [,] B ) ) )  ->  ( D [,] C )  C_  ( A [,] B ) )
5049ancom2s 844 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( D [,] C )  C_  ( A [,] B ) )
51503adantr3 1222 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( D [,] C )  C_  ( A [,] B ) )
5251adantr 481 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  D  <  C )  -> 
( D [,] C
)  C_  ( A [,] B ) )
539, 7jca 554 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( D  e.  RR  /\  C  e.  RR ) )
54533adantr3 1222 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( D  e.  RR  /\  C  e.  RR ) )
5554, 12jca 554 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) ) )
56 iirev 22728 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
5723, 56sseldi 3601 . . . . . . . . . . . . . . . 16  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  RR )
5857recnd 10068 . . . . . . . . . . . . . . 15  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  CC )
59 recn 10026 . . . . . . . . . . . . . . 15  |-  ( C  e.  RR  ->  C  e.  CC )
60 mulcl 10020 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  T
)  e.  CC  /\  C  e.  CC )  ->  ( ( 1  -  T )  x.  C
)  e.  CC )
6158, 59, 60syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( C  e.  RR  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  C )  e.  CC )
6261adantll 750 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
1  -  T )  x.  C )  e.  CC )
63 recn 10026 . . . . . . . . . . . . . . 15  |-  ( D  e.  RR  ->  D  e.  CC )
64 mulcl 10020 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  CC  /\  D  e.  CC )  ->  ( T  x.  D
)  e.  CC )
6525, 63, 64syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( D  e.  RR  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  D )  e.  CC )
6665adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  D )  e.  CC )
6762, 66addcomd 10238 . . . . . . . . . . . 12  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  =  ( ( T  x.  D )  +  ( ( 1  -  T
)  x.  C ) ) )
68673adantl3 1219 . . . . . . . . . . 11  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  =  ( ( T  x.  D
)  +  ( ( 1  -  T )  x.  C ) ) )
69 nncan 10310 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
7029, 69mpan 706 . . . . . . . . . . . . . . . 16  |-  ( T  e.  CC  ->  (
1  -  ( 1  -  T ) )  =  T )
7170eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( T  e.  CC  ->  T  =  ( 1  -  ( 1  -  T
) ) )
7271oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( T  e.  CC  ->  ( T  x.  D )  =  ( ( 1  -  ( 1  -  T ) )  x.  D ) )
7372oveq1d 6665 . . . . . . . . . . . . 13  |-  ( T  e.  CC  ->  (
( T  x.  D
)  +  ( ( 1  -  T )  x.  C ) )  =  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) ) )
7425, 73syl 17 . . . . . . . . . . . 12  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( T  x.  D
)  +  ( ( 1  -  T )  x.  C ) )  =  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) ) )
7574adantl 482 . . . . . . . . . . 11  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  D )  +  ( ( 1  -  T )  x.  C
) )  =  ( ( ( 1  -  ( 1  -  T
) )  x.  D
)  +  ( ( 1  -  T )  x.  C ) ) )
7668, 75eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  =  ( ( ( 1  -  ( 1  -  T
) )  x.  D
)  +  ( ( 1  -  T )  x.  C ) ) )
77 lincmb01cmp 12315 . . . . . . . . . . 11  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) )  e.  ( D [,] C ) )
7856, 77sylan2 491 . . . . . . . . . 10  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  D )  +  ( ( 1  -  T )  x.  C
) )  e.  ( D [,] C ) )
7976, 78eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  C )  +  ( T  x.  D
) )  e.  ( D [,] C ) )
8079ex 450 . . . . . . . 8  |-  ( ( D  e.  RR  /\  C  e.  RR  /\  D  <  C )  ->  ( T  e.  ( 0 [,] 1 )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( D [,] C ) ) )
81803expa 1265 . . . . . . 7  |-  ( ( ( D  e.  RR  /\  C  e.  RR )  /\  D  <  C
)  ->  ( T  e.  ( 0 [,] 1
)  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( D [,] C
) ) )
8281imp 445 . . . . . 6  |-  ( ( ( ( D  e.  RR  /\  C  e.  RR )  /\  D  <  C )  /\  T  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( D [,] C ) )
8382an32s 846 . . . . 5  |-  ( ( ( ( D  e.  RR  /\  C  e.  RR )  /\  T  e.  ( 0 [,] 1
) )  /\  D  <  C )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( D [,] C ) )
8455, 83sylan 488 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  D  <  C )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( D [,] C ) )
8552, 84sseldd 3604 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B
)  /\  T  e.  ( 0 [,] 1
) ) )  /\  D  <  C )  -> 
( ( ( 1  -  T )  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B ) )
867, 9lttri4d 10178 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B ) ) )  ->  ( C  <  D  \/  C  =  D  \/  D  <  C ) )
87863adantr3 1222 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  ( C  <  D  \/  C  =  D  \/  D  <  C ) )
8820, 47, 85, 87mpjao3dan 1395 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) ) )  ->  (
( ( 1  -  T )  x.  C
)  +  ( T  x.  D ) )  e.  ( A [,] B ) )
8988ex 450 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,] B
)  /\  D  e.  ( A [,] B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( (
( 1  -  T
)  x.  C )  +  ( T  x.  D ) )  e.  ( A [,] B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-rp 11833  df-icc 12182
This theorem is referenced by:  reparphti  22797
  Copyright terms: Public domain W3C validator