| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprpiece1res2 | Structured version Visualization version Unicode version | ||
| Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| oprpiece1.1 |
|
| oprpiece1.2 |
|
| oprpiece1.3 |
|
| oprpiece1.4 |
|
| oprpiece1.5 |
|
| oprpiece1.6 |
|
| oprpiece1.7 |
|
| oprpiece1.9 |
|
| oprpiece1.10 |
|
| oprpiece1.11 |
|
| oprpiece1.12 |
|
| Ref | Expression |
|---|---|
| oprpiece1res2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprpiece1.6 |
. . . 4
| |
| 2 | oprpiece1.1 |
. . . . . 6
| |
| 3 | 2 | rexri 10097 |
. . . . 5
|
| 4 | oprpiece1.2 |
. . . . . 6
| |
| 5 | 4 | rexri 10097 |
. . . . 5
|
| 6 | oprpiece1.3 |
. . . . 5
| |
| 7 | ubicc2 12289 |
. . . . 5
| |
| 8 | 3, 5, 6, 7 | mp3an 1424 |
. . . 4
|
| 9 | iccss2 12244 |
. . . 4
| |
| 10 | 1, 8, 9 | mp2an 708 |
. . 3
|
| 11 | ssid 3624 |
. . 3
| |
| 12 | resmpt2 6758 |
. . 3
| |
| 13 | 10, 11, 12 | mp2an 708 |
. 2
|
| 14 | oprpiece1.7 |
. . 3
| |
| 15 | 14 | reseq1i 5392 |
. 2
|
| 16 | oprpiece1.12 |
. . 3
| |
| 17 | oprpiece1.11 |
. . . . . . 7
| |
| 18 | 17 | ad2antlr 763 |
. . . . . 6
|
| 19 | simpr 477 |
. . . . . . . 8
| |
| 20 | 2, 4 | elicc2i 12239 |
. . . . . . . . . . . . 13
|
| 21 | 20 | simp1bi 1076 |
. . . . . . . . . . . 12
|
| 22 | 1, 21 | ax-mp 5 |
. . . . . . . . . . 11
|
| 23 | 22, 4 | elicc2i 12239 |
. . . . . . . . . 10
|
| 24 | 23 | simp2bi 1077 |
. . . . . . . . 9
|
| 25 | 24 | ad2antrr 762 |
. . . . . . . 8
|
| 26 | 23 | simp1bi 1076 |
. . . . . . . . . 10
|
| 27 | 26 | ad2antrr 762 |
. . . . . . . . 9
|
| 28 | letri3 10123 |
. . . . . . . . 9
| |
| 29 | 27, 22, 28 | sylancl 694 |
. . . . . . . 8
|
| 30 | 19, 25, 29 | mpbir2and 957 |
. . . . . . 7
|
| 31 | oprpiece1.9 |
. . . . . . 7
| |
| 32 | 30, 31 | syl 17 |
. . . . . 6
|
| 33 | oprpiece1.10 |
. . . . . . 7
| |
| 34 | 30, 33 | syl 17 |
. . . . . 6
|
| 35 | 18, 32, 34 | 3eqtr4d 2666 |
. . . . 5
|
| 36 | eqidd 2623 |
. . . . 5
| |
| 37 | 35, 36 | ifeqda 4121 |
. . . 4
|
| 38 | 37 | mpt2eq3ia 6720 |
. . 3
|
| 39 | 16, 38 | eqtr4i 2647 |
. 2
|
| 40 | 13, 15, 39 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |