Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnpi1 Structured version   Visualization version   Unicode version

Theorem pconnpi1 31219
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pconnpi1.x  |-  X  = 
U. J
pconnpi1.p  |-  P  =  ( J  pi1  A )
pconnpi1.q  |-  Q  =  ( J  pi1  B )
pconnpi1.s  |-  S  =  ( Base `  P
)
pconnpi1.t  |-  T  =  ( Base `  Q
)
Assertion
Ref Expression
pconnpi1  |-  ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  ->  P  ~=g𝑔  Q )

Proof of Theorem pconnpi1
Dummy variables  f  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconnpi1.x . . 3  |-  X  = 
U. J
21pconncn 31206 . 2  |-  ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) )
3 eqid 2622 . . . . 5  |-  ( J  pi1  ( f `
 0 ) )  =  ( J  pi1  ( f ` 
0 ) )
4 eqid 2622 . . . . 5  |-  ( J  pi1  ( f `
 1 ) )  =  ( J  pi1  ( f ` 
1 ) )
5 eqid 2622 . . . . 5  |-  ( Base `  ( J  pi1 
( f `  0
) ) )  =  ( Base `  ( J  pi1  ( f `
 0 ) ) )
6 eqid 2622 . . . . 5  |-  ran  (
h  e.  U. ( Base `  ( J  pi1  ( f ` 
0 ) ) ) 
|->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  =  ran  ( h  e.  U. ( Base `  ( J  pi1  ( f ` 
0 ) ) ) 
|->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )
7 simpl1 1064 . . . . . . 7  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  ->  J  e. PConn )
8 pconntop 31207 . . . . . . 7  |-  ( J  e. PConn  ->  J  e.  Top )
97, 8syl 17 . . . . . 6  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  ->  J  e.  Top )
101toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
119, 10sylib 208 . . . . 5  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  ->  J  e.  (TopOn `  X
) )
12 simprl 794 . . . . 5  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
f  e.  ( II 
Cn  J ) )
13 oveq2 6658 . . . . . . 7  |-  ( x  =  y  ->  (
1  -  x )  =  ( 1  -  y ) )
1413fveq2d 6195 . . . . . 6  |-  ( x  =  y  ->  (
f `  ( 1  -  x ) )  =  ( f `  (
1  -  y ) ) )
1514cbvmptv 4750 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) )  =  ( y  e.  ( 0 [,] 1
)  |->  ( f `  ( 1  -  y
) ) )
163, 4, 5, 6, 11, 12, 15pi1xfrgim 22858 . . . 4  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  ->  ran  ( h  e.  U. ( Base `  ( J  pi1  ( f `  0 ) ) )  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  e.  (
( J  pi1 
( f `  0
) ) GrpIso  ( J  pi1  ( f `  1 ) ) ) )
17 simprrl 804 . . . . . . 7  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( f `  0
)  =  A )
1817oveq2d 6666 . . . . . 6  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( J  pi1 
( f `  0
) )  =  ( J  pi1  A ) )
19 pconnpi1.p . . . . . 6  |-  P  =  ( J  pi1  A )
2018, 19syl6eqr 2674 . . . . 5  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( J  pi1 
( f `  0
) )  =  P )
21 simprrr 805 . . . . . . 7  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( f `  1
)  =  B )
2221oveq2d 6666 . . . . . 6  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( J  pi1 
( f `  1
) )  =  ( J  pi1  B ) )
23 pconnpi1.q . . . . . 6  |-  Q  =  ( J  pi1  B )
2422, 23syl6eqr 2674 . . . . 5  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( J  pi1 
( f `  1
) )  =  Q )
2520, 24oveq12d 6668 . . . 4  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  -> 
( ( J  pi1  ( f ` 
0 ) ) GrpIso  ( J  pi1  ( f `
 1 ) ) )  =  ( P GrpIso  Q ) )
2616, 25eleqtrd 2703 . . 3  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  ->  ran  ( h  e.  U. ( Base `  ( J  pi1  ( f `  0 ) ) )  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  e.  ( P GrpIso  Q ) )
27 brgici 17712 . . 3  |-  ( ran  ( h  e.  U. ( Base `  ( J  pi1  ( f `  0 ) ) )  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  e.  ( P GrpIso  Q )  ->  P  ~=g𝑔  Q )
2826, 27syl 17 . 2  |-  ( ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  B ) ) )  ->  P  ~=g𝑔  Q )
292, 28rexlimddv 3035 1  |-  ( ( J  e. PConn  /\  A  e.  X  /\  B  e.  X )  ->  P  ~=g𝑔  Q )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   [cec 7740   0cc0 9936   1c1 9937    - cmin 10266   [,]cicc 12178   Basecbs 15857   GrpIso cgim 17699    ~=g𝑔 cgic 17700   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   IIcii 22678    ~=ph cphtpc 22768   *pcpco 22800    pi1 cpi1 22803  PConncpconn 31201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-ghm 17658  df-gim 17701  df-gic 17702  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-om1 22806  df-pi1 22808  df-pconn 31203
This theorem is referenced by:  sconnpi1  31221
  Copyright terms: Public domain W3C validator