| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcpremul | Structured version Visualization version Unicode version | ||
| Description: Multiplicative property
of the prime count pre-function. Note that the
primality of |
| Ref | Expression |
|---|---|
| pcpremul.1 |
|
| pcpremul.2 |
|
| pcpremul.3 |
|
| Ref | Expression |
|---|---|
| pcpremul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmuz2 15408 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant1 1082 |
. . . . . 6
|
| 3 | zmulcl 11426 |
. . . . . . . 8
| |
| 4 | 3 | ad2ant2r 783 |
. . . . . . 7
|
| 5 | 4 | 3adant1 1079 |
. . . . . 6
|
| 6 | zcn 11382 |
. . . . . . . . 9
| |
| 7 | 6 | anim1i 592 |
. . . . . . . 8
|
| 8 | zcn 11382 |
. . . . . . . . 9
| |
| 9 | 8 | anim1i 592 |
. . . . . . . 8
|
| 10 | mulne0 10669 |
. . . . . . . 8
| |
| 11 | 7, 9, 10 | syl2an 494 |
. . . . . . 7
|
| 12 | 11 | 3adant1 1079 |
. . . . . 6
|
| 13 | eqid 2622 |
. . . . . . 7
| |
| 14 | 13 | pclem 15543 |
. . . . . 6
|
| 15 | 2, 5, 12, 14 | syl12anc 1324 |
. . . . 5
|
| 16 | 15 | simp1d 1073 |
. . . 4
|
| 17 | 15 | simp3d 1075 |
. . . 4
|
| 18 | simp2l 1087 |
. . . . . . . . 9
| |
| 19 | simp2r 1088 |
. . . . . . . . 9
| |
| 20 | eqid 2622 |
. . . . . . . . . 10
| |
| 21 | pcpremul.1 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | pcprecl 15544 |
. . . . . . . . 9
|
| 23 | 2, 18, 19, 22 | syl12anc 1324 |
. . . . . . . 8
|
| 24 | 23 | simpld 475 |
. . . . . . 7
|
| 25 | simp3l 1089 |
. . . . . . . . 9
| |
| 26 | simp3r 1090 |
. . . . . . . . 9
| |
| 27 | eqid 2622 |
. . . . . . . . . 10
| |
| 28 | pcpremul.2 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | pcprecl 15544 |
. . . . . . . . 9
|
| 30 | 2, 25, 26, 29 | syl12anc 1324 |
. . . . . . . 8
|
| 31 | 30 | simpld 475 |
. . . . . . 7
|
| 32 | 24, 31 | nn0addcld 11355 |
. . . . . 6
|
| 33 | prmnn 15388 |
. . . . . . . . . . 11
| |
| 34 | 33 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 35 | 34 | nncnd 11036 |
. . . . . . . . 9
|
| 36 | 35, 31, 24 | expaddd 13010 |
. . . . . . . 8
|
| 37 | 23 | simprd 479 |
. . . . . . . . 9
|
| 38 | 34, 24 | nnexpcld 13030 |
. . . . . . . . . . 11
|
| 39 | 38 | nnzd 11481 |
. . . . . . . . . 10
|
| 40 | 34, 31 | nnexpcld 13030 |
. . . . . . . . . . 11
|
| 41 | 40 | nnzd 11481 |
. . . . . . . . . 10
|
| 42 | dvdsmulc 15009 |
. . . . . . . . . 10
| |
| 43 | 39, 18, 41, 42 | syl3anc 1326 |
. . . . . . . . 9
|
| 44 | 37, 43 | mpd 15 |
. . . . . . . 8
|
| 45 | 36, 44 | eqbrtrd 4675 |
. . . . . . 7
|
| 46 | 30 | simprd 479 |
. . . . . . . 8
|
| 47 | dvdscmul 15008 |
. . . . . . . . 9
| |
| 48 | 41, 25, 18, 47 | syl3anc 1326 |
. . . . . . . 8
|
| 49 | 46, 48 | mpd 15 |
. . . . . . 7
|
| 50 | 34, 32 | nnexpcld 13030 |
. . . . . . . . 9
|
| 51 | 50 | nnzd 11481 |
. . . . . . . 8
|
| 52 | 18, 41 | zmulcld 11488 |
. . . . . . . 8
|
| 53 | dvdstr 15018 |
. . . . . . . 8
| |
| 54 | 51, 52, 5, 53 | syl3anc 1326 |
. . . . . . 7
|
| 55 | 45, 49, 54 | mp2and 715 |
. . . . . 6
|
| 56 | oveq2 6658 |
. . . . . . . 8
| |
| 57 | 56 | breq1d 4663 |
. . . . . . 7
|
| 58 | 57 | elrab 3363 |
. . . . . 6
|
| 59 | 32, 55, 58 | sylanbrc 698 |
. . . . 5
|
| 60 | oveq2 6658 |
. . . . . . 7
| |
| 61 | 60 | breq1d 4663 |
. . . . . 6
|
| 62 | 61 | cbvrabv 3199 |
. . . . 5
|
| 63 | 59, 62 | syl6eleq 2711 |
. . . 4
|
| 64 | suprzub 11779 |
. . . 4
| |
| 65 | 16, 17, 63, 64 | syl3anc 1326 |
. . 3
|
| 66 | pcpremul.3 |
. . 3
| |
| 67 | 65, 66 | syl6breqr 4695 |
. 2
|
| 68 | 20, 21 | pcprendvds2 15546 |
. . . . . 6
|
| 69 | 2, 18, 19, 68 | syl12anc 1324 |
. . . . 5
|
| 70 | 27, 28 | pcprendvds2 15546 |
. . . . . 6
|
| 71 | 2, 25, 26, 70 | syl12anc 1324 |
. . . . 5
|
| 72 | ioran 511 |
. . . . 5
| |
| 73 | 69, 71, 72 | sylanbrc 698 |
. . . 4
|
| 74 | simp1 1061 |
. . . . 5
| |
| 75 | 38 | nnne0d 11065 |
. . . . . . 7
|
| 76 | dvdsval2 14986 |
. . . . . . 7
| |
| 77 | 39, 75, 18, 76 | syl3anc 1326 |
. . . . . 6
|
| 78 | 37, 77 | mpbid 222 |
. . . . 5
|
| 79 | 40 | nnne0d 11065 |
. . . . . . 7
|
| 80 | dvdsval2 14986 |
. . . . . . 7
| |
| 81 | 41, 79, 25, 80 | syl3anc 1326 |
. . . . . 6
|
| 82 | 46, 81 | mpbid 222 |
. . . . 5
|
| 83 | euclemma 15425 |
. . . . 5
| |
| 84 | 74, 78, 82, 83 | syl3anc 1326 |
. . . 4
|
| 85 | 73, 84 | mtbird 315 |
. . 3
|
| 86 | 13, 66 | pcprecl 15544 |
. . . . . . 7
|
| 87 | 2, 5, 12, 86 | syl12anc 1324 |
. . . . . 6
|
| 88 | 87 | simpld 475 |
. . . . 5
|
| 89 | nn0ltp1le 11435 |
. . . . 5
| |
| 90 | 32, 88, 89 | syl2anc 693 |
. . . 4
|
| 91 | 34 | nnzd 11481 |
. . . . . . 7
|
| 92 | peano2nn0 11333 |
. . . . . . . 8
| |
| 93 | 32, 92 | syl 17 |
. . . . . . 7
|
| 94 | dvdsexp 15049 |
. . . . . . . 8
| |
| 95 | 94 | 3expia 1267 |
. . . . . . 7
|
| 96 | 91, 93, 95 | syl2anc 693 |
. . . . . 6
|
| 97 | 87 | simprd 479 |
. . . . . . 7
|
| 98 | 34, 93 | nnexpcld 13030 |
. . . . . . . . 9
|
| 99 | 98 | nnzd 11481 |
. . . . . . . 8
|
| 100 | 34, 88 | nnexpcld 13030 |
. . . . . . . . 9
|
| 101 | 100 | nnzd 11481 |
. . . . . . . 8
|
| 102 | dvdstr 15018 |
. . . . . . . 8
| |
| 103 | 99, 101, 5, 102 | syl3anc 1326 |
. . . . . . 7
|
| 104 | 97, 103 | mpan2d 710 |
. . . . . 6
|
| 105 | 96, 104 | syld 47 |
. . . . 5
|
| 106 | 93 | nn0zd 11480 |
. . . . . 6
|
| 107 | 88 | nn0zd 11480 |
. . . . . 6
|
| 108 | eluz 11701 |
. . . . . 6
| |
| 109 | 106, 107, 108 | syl2anc 693 |
. . . . 5
|
| 110 | 35, 32 | expp1d 13009 |
. . . . . . 7
|
| 111 | 18 | zcnd 11483 |
. . . . . . . . . 10
|
| 112 | 25 | zcnd 11483 |
. . . . . . . . . 10
|
| 113 | 111, 112 | mulcld 10060 |
. . . . . . . . 9
|
| 114 | 50 | nncnd 11036 |
. . . . . . . . 9
|
| 115 | 50 | nnne0d 11065 |
. . . . . . . . 9
|
| 116 | 113, 114, 115 | divcan2d 10803 |
. . . . . . . 8
|
| 117 | 36 | oveq2d 6666 |
. . . . . . . . . 10
|
| 118 | 38 | nncnd 11036 |
. . . . . . . . . . 11
|
| 119 | 40 | nncnd 11036 |
. . . . . . . . . . 11
|
| 120 | 111, 118, 112, 119, 75, 79 | divmuldivd 10842 |
. . . . . . . . . 10
|
| 121 | 117, 120 | eqtr4d 2659 |
. . . . . . . . 9
|
| 122 | 121 | oveq2d 6666 |
. . . . . . . 8
|
| 123 | 116, 122 | eqtr3d 2658 |
. . . . . . 7
|
| 124 | 110, 123 | breq12d 4666 |
. . . . . 6
|
| 125 | 78, 82 | zmulcld 11488 |
. . . . . . 7
|
| 126 | dvdscmulr 15010 |
. . . . . . 7
| |
| 127 | 91, 125, 51, 115, 126 | syl112anc 1330 |
. . . . . 6
|
| 128 | 124, 127 | bitrd 268 |
. . . . 5
|
| 129 | 105, 109, 128 | 3imtr3d 282 |
. . . 4
|
| 130 | 90, 129 | sylbid 230 |
. . 3
|
| 131 | 85, 130 | mtod 189 |
. 2
|
| 132 | 32 | nn0red 11352 |
. . 3
|
| 133 | 88 | nn0red 11352 |
. . 3
|
| 134 | 132, 133 | eqleltd 10181 |
. 2
|
| 135 | 67, 131, 134 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 |
| This theorem is referenced by: pceulem 15550 pcmul 15556 |
| Copyright terms: Public domain | W3C validator |