MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpremul Structured version   Visualization version   Unicode version

Theorem pcpremul 15548
Description: Multiplicative property of the prime count pre-function. Note that the primality of  P is essential for this property;  ( 4  pCnt  2
)  =  0 but  ( 4  pCnt 
( 2  x.  2 ) )  =  1  =/=  2  x.  (
4  pCnt  2 )  =  0. Since this is needed to show uniqueness for the real prime count function (over  QQ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcpremul.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  M } ,  RR ,  <  )
pcpremul.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
pcpremul.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } ,  RR ,  <  )
Assertion
Ref Expression
pcpremul  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  =  U )
Distinct variable groups:    n, M    n, N    P, n
Allowed substitution hints:    S( n)    T( n)    U( n)

Proof of Theorem pcpremul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 15408 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
213ad2ant1 1082 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ( ZZ>= ` 
2 ) )
3 zmulcl 11426 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
43ad2ant2r 783 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  ZZ )
543adant1 1079 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  ZZ )
6 zcn 11382 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
76anim1i 592 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M  e.  CC  /\  M  =/=  0 ) )
8 zcn 11382 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
98anim1i 592 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( N  e.  CC  /\  N  =/=  0 ) )
10 mulne0 10669 . . . . . . . 8  |-  ( ( ( M  e.  CC  /\  M  =/=  0 )  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
117, 9, 10syl2an 494 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
12113adant1 1079 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
13 eqid 2622 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }
1413pclem 15543 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ  /\  { n  e. 
NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } y  <_  x ) )
152, 5, 12, 14syl12anc 1324 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( { n  e. 
NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  C_  ZZ  /\ 
{ n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  =/=  (/) 
/\  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } y  <_  x ) )
1615simp1d 1073 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ )
1715simp3d 1075 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } y  <_  x )
18 simp2l 1087 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  e.  ZZ )
19 simp2r 1088 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  =/=  0 )
20 eqid 2622 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  M }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  M }
21 pcpremul.1 . . . . . . . . . 10  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  M } ,  RR ,  <  )
2220, 21pcprecl 15544 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  M )
)
232, 18, 19, 22syl12anc 1324 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  M )
)
2423simpld 475 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
25 simp3l 1089 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
26 simp3r 1090 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  =/=  0 )
27 eqid 2622 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
28 pcpremul.2 . . . . . . . . . 10  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
2927, 28pcprecl 15544 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( T  e.  NN0  /\  ( P ^ T
)  ||  N )
)
302, 25, 26, 29syl12anc 1324 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( T  e.  NN0  /\  ( P ^ T
)  ||  N )
)
3130simpld 475 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  T  e.  NN0 )
3224, 31nn0addcld 11355 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  NN0 )
33 prmnn 15388 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  NN )
34333ad2ant1 1082 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  NN )
3534nncnd 11036 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  CC )
3635, 31, 24expaddd 13010 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  =  ( ( P ^ S )  x.  ( P ^ T ) ) )
3723simprd 479 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  ||  M )
3834, 24nnexpcld 13030 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  NN )
3938nnzd 11481 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  ZZ )
4034, 31nnexpcld 13030 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  NN )
4140nnzd 11481 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  ZZ )
42 dvdsmulc 15009 . . . . . . . . . 10  |-  ( ( ( P ^ S
)  e.  ZZ  /\  M  e.  ZZ  /\  ( P ^ T )  e.  ZZ )  ->  (
( P ^ S
)  ||  M  ->  ( ( P ^ S
)  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) ) )
4339, 18, 41, 42syl3anc 1326 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  M  ->  ( ( P ^ S )  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) ) )
4437, 43mpd 15 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) )
4536, 44eqbrtrd 4675 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  ( P ^ T
) ) )
4630simprd 479 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  ||  N )
47 dvdscmul 15008 . . . . . . . . 9  |-  ( ( ( P ^ T
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( P ^ T
)  ||  N  ->  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) ) )
4841, 25, 18, 47syl3anc 1326 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ T )  ||  N  ->  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) ) )
4946, 48mpd 15 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) )
5034, 32nnexpcld 13030 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  NN )
5150nnzd 11481 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  ZZ )
5218, 41zmulcld 11488 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  ( P ^ T ) )  e.  ZZ )
53 dvdstr 15018 . . . . . . . 8  |-  ( ( ( P ^ ( S  +  T )
)  e.  ZZ  /\  ( M  x.  ( P ^ T ) )  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( P ^
( S  +  T
) )  ||  ( M  x.  ( P ^ T ) )  /\  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  N ) ) )
5451, 52, 5, 53syl3anc 1326 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( S  +  T ) )  ||  ( M  x.  ( P ^ T ) )  /\  ( M  x.  ( P ^ T ) )  ||  ( M  x.  N ) )  ->  ( P ^
( S  +  T
) )  ||  ( M  x.  N )
) )
5545, 49, 54mp2and 715 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  N ) )
56 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( S  +  T )  ->  ( P ^ x )  =  ( P ^ ( S  +  T )
) )
5756breq1d 4663 . . . . . . 7  |-  ( x  =  ( S  +  T )  ->  (
( P ^ x
)  ||  ( M  x.  N )  <->  ( P ^ ( S  +  T ) )  ||  ( M  x.  N
) ) )
5857elrab 3363 . . . . . 6  |-  ( ( S  +  T )  e.  { x  e. 
NN0  |  ( P ^ x )  ||  ( M  x.  N
) }  <->  ( ( S  +  T )  e.  NN0  /\  ( P ^ ( S  +  T ) )  ||  ( M  x.  N
) ) )
5932, 55, 58sylanbrc 698 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  { x  e.  NN0  |  ( P ^ x )  ||  ( M  x.  N
) } )
60 oveq2 6658 . . . . . . 7  |-  ( x  =  n  ->  ( P ^ x )  =  ( P ^ n
) )
6160breq1d 4663 . . . . . 6  |-  ( x  =  n  ->  (
( P ^ x
)  ||  ( M  x.  N )  <->  ( P ^ n )  ||  ( M  x.  N
) ) )
6261cbvrabv 3199 . . . . 5  |-  { x  e.  NN0  |  ( P ^ x )  ||  ( M  x.  N
) }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }
6359, 62syl6eleq 2711 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } )
64 suprzub 11779 . . . 4  |-  ( ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ  /\  E. x  e.  ZZ  A. y  e. 
{ n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } y  <_  x  /\  ( S  +  T )  e.  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } )  ->  ( S  +  T )  <_  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } ,  RR ,  <  ) )
6516, 17, 63, 64syl3anc 1326 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  <_  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } ,  RR ,  <  ) )
66 pcpremul.3 . . 3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } ,  RR ,  <  )
6765, 66syl6breqr 4695 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  <_  U )
6820, 21pcprendvds2 15546 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  ->  -.  P  ||  ( M  /  ( P ^ S ) ) )
692, 18, 19, 68syl12anc 1324 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( M  /  ( P ^ S ) ) )
7027, 28pcprendvds2 15546 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ T ) ) )
712, 25, 26, 70syl12anc 1324 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ T ) ) )
72 ioran 511 . . . . 5  |-  ( -.  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) )  <-> 
( -.  P  ||  ( M  /  ( P ^ S ) )  /\  -.  P  ||  ( N  /  ( P ^ T ) ) ) )
7369, 71, 72sylanbrc 698 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) )
74 simp1 1061 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  Prime )
7538nnne0d 11065 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  =/=  0 )
76 dvdsval2 14986 . . . . . . 7  |-  ( ( ( P ^ S
)  e.  ZZ  /\  ( P ^ S )  =/=  0  /\  M  e.  ZZ )  ->  (
( P ^ S
)  ||  M  <->  ( M  /  ( P ^ S ) )  e.  ZZ ) )
7739, 75, 18, 76syl3anc 1326 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  M  <->  ( M  /  ( P ^ S ) )  e.  ZZ ) )
7837, 77mpbid 222 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  /  ( P ^ S ) )  e.  ZZ )
7940nnne0d 11065 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  =/=  0 )
80 dvdsval2 14986 . . . . . . 7  |-  ( ( ( P ^ T
)  e.  ZZ  /\  ( P ^ T )  =/=  0  /\  N  e.  ZZ )  ->  (
( P ^ T
)  ||  N  <->  ( N  /  ( P ^ T ) )  e.  ZZ ) )
8141, 79, 25, 80syl3anc 1326 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ T )  ||  N  <->  ( N  /  ( P ^ T ) )  e.  ZZ ) )
8246, 81mpbid 222 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N  /  ( P ^ T ) )  e.  ZZ )
83 euclemma 15425 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  /  ( P ^ S ) )  e.  ZZ  /\  ( N  /  ( P ^ T ) )  e.  ZZ )  ->  ( P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) )  <->  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) ) )
8474, 78, 82, 83syl3anc 1326 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  ||  (
( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) )  <->  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) ) )
8573, 84mtbird 315 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )
8613, 66pcprecl 15544 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( U  e.  NN0  /\  ( P ^ U )  ||  ( M  x.  N
) ) )
872, 5, 12, 86syl12anc 1324 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  NN0  /\  ( P ^ U
)  ||  ( M  x.  N ) ) )
8887simpld 475 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  NN0 )
89 nn0ltp1le 11435 . . . . 5  |-  ( ( ( S  +  T
)  e.  NN0  /\  U  e.  NN0 )  -> 
( ( S  +  T )  <  U  <->  ( ( S  +  T
)  +  1 )  <_  U ) )
9032, 88, 89syl2anc 693 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  <  U  <->  ( ( S  +  T
)  +  1 )  <_  U ) )
9134nnzd 11481 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ZZ )
92 peano2nn0 11333 . . . . . . . 8  |-  ( ( S  +  T )  e.  NN0  ->  ( ( S  +  T )  +  1 )  e. 
NN0 )
9332, 92syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  +  1 )  e.  NN0 )
94 dvdsexp 15049 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( S  +  T )  +  1 )  e.  NN0  /\  U  e.  ( ZZ>= `  ( ( S  +  T )  +  1 ) ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) )
95943expia 1267 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( S  +  T )  +  1 )  e.  NN0 )  ->  ( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) ) )
9691, 93, 95syl2anc 693 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) ) )
9787simprd 479 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  ||  ( M  x.  N ) )
9834, 93nnexpcld 13030 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  e.  NN )
9998nnzd 11481 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  e.  ZZ )
10034, 88nnexpcld 13030 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  e.  NN )
101100nnzd 11481 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  e.  ZZ )
102 dvdstr 15018 . . . . . . . 8  |-  ( ( ( P ^ (
( S  +  T
)  +  1 ) )  e.  ZZ  /\  ( P ^ U )  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  /\  ( P ^ U ) 
||  ( M  x.  N ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
10399, 101, 5, 102syl3anc 1326 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  /\  ( P ^ U )  ||  ( M  x.  N )
)  ->  ( P ^ ( ( S  +  T )  +  1 ) )  ||  ( M  x.  N
) ) )
10497, 103mpan2d 710 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
10596, 104syld 47 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
10693nn0zd 11480 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  +  1 )  e.  ZZ )
10788nn0zd 11480 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  ZZ )
108 eluz 11701 . . . . . 6  |-  ( ( ( ( S  +  T )  +  1 )  e.  ZZ  /\  U  e.  ZZ )  ->  ( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  <->  ( ( S  +  T )  +  1 )  <_  U ) )
109106, 107, 108syl2anc 693 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  <->  ( ( S  +  T )  +  1 )  <_  U ) )
11035, 32expp1d 13009 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  =  ( ( P ^ ( S  +  T ) )  x.  P ) )
11118zcnd 11483 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  e.  CC )
11225zcnd 11483 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  CC )
113111, 112mulcld 10060 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  CC )
11450nncnd 11036 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  CC )
11550nnne0d 11065 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  =/=  0 )
116113, 114, 115divcan2d 10803 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  T
) )  x.  (
( M  x.  N
)  /  ( P ^ ( S  +  T ) ) ) )  =  ( M  x.  N ) )
11736oveq2d 6666 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N )  /  ( P ^ ( S  +  T ) ) )  =  ( ( M  x.  N )  / 
( ( P ^ S )  x.  ( P ^ T ) ) ) )
11838nncnd 11036 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  CC )
11940nncnd 11036 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  CC )
120111, 118, 112, 119, 75, 79divmuldivd 10842 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  =  ( ( M  x.  N )  / 
( ( P ^ S )  x.  ( P ^ T ) ) ) )
121117, 120eqtr4d 2659 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N )  /  ( P ^ ( S  +  T ) ) )  =  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) )
122121oveq2d 6666 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  T
) )  x.  (
( M  x.  N
)  /  ( P ^ ( S  +  T ) ) ) )  =  ( ( P ^ ( S  +  T ) )  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
123116, 122eqtr3d 2658 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =  ( ( P ^ ( S  +  T ) )  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
124110, 123breq12d 4666 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( M  x.  N )  <->  ( ( P ^ ( S  +  T )
)  x.  P ) 
||  ( ( P ^ ( S  +  T ) )  x.  ( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) ) ) ) )
12578, 82zmulcld 11488 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  e.  ZZ )
126 dvdscmulr 15010 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  e.  ZZ  /\  (
( P ^ ( S  +  T )
)  e.  ZZ  /\  ( P ^ ( S  +  T ) )  =/=  0 ) )  ->  ( ( ( P ^ ( S  +  T ) )  x.  P )  ||  ( ( P ^
( S  +  T
) )  x.  (
( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )  <-> 
P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
12791, 125, 51, 115, 126syl112anc 1330 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( S  +  T ) )  x.  P )  ||  (
( P ^ ( S  +  T )
)  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )  <-> 
P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
128124, 127bitrd 268 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( M  x.  N )  <->  P 
||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
129105, 109, 1283imtr3d 282 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( S  +  T )  +  1 )  <_  U  ->  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) ) )
13090, 129sylbid 230 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  <  U  ->  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) ) )
13185, 130mtod 189 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  T
)  <  U )
13232nn0red 11352 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  RR )
13388nn0red 11352 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  RR )
134132, 133eqleltd 10181 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  =  U  <-> 
( ( S  +  T )  <_  U  /\  -.  ( S  +  T )  <  U
) ) )
13567, 131, 134mpbir2and 957 1  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  pceulem  15550  pcmul  15556
  Copyright terms: Public domain W3C validator