| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pceulem | Structured version Visualization version Unicode version | ||
| Description: Lemma for pceu 15551. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| pcval.1 |
|
| pcval.2 |
|
| pceu.3 |
|
| pceu.4 |
|
| pceu.5 |
|
| pceu.6 |
|
| pceu.7 |
|
| pceu.8 |
|
| pceu.9 |
|
| pceu.10 |
|
| Ref | Expression |
|---|---|
| pceulem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pceu.7 |
. . . . . . . . . . 11
| |
| 2 | 1 | simprd 479 |
. . . . . . . . . 10
|
| 3 | 2 | nncnd 11036 |
. . . . . . . . 9
|
| 4 | pceu.9 |
. . . . . . . . . . 11
| |
| 5 | 4 | simpld 475 |
. . . . . . . . . 10
|
| 6 | 5 | zcnd 11483 |
. . . . . . . . 9
|
| 7 | 3, 6 | mulcomd 10061 |
. . . . . . . 8
|
| 8 | pceu.10 |
. . . . . . . . . 10
| |
| 9 | pceu.8 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | eqtr3d 2658 |
. . . . . . . . 9
|
| 11 | 4 | simprd 479 |
. . . . . . . . . . 11
|
| 12 | 11 | nncnd 11036 |
. . . . . . . . . 10
|
| 13 | 1 | simpld 475 |
. . . . . . . . . . 11
|
| 14 | 13 | zcnd 11483 |
. . . . . . . . . 10
|
| 15 | 11 | nnne0d 11065 |
. . . . . . . . . 10
|
| 16 | 2 | nnne0d 11065 |
. . . . . . . . . 10
|
| 17 | 6, 12, 14, 3, 15, 16 | divmuleqd 10847 |
. . . . . . . . 9
|
| 18 | 10, 17 | mpbid 222 |
. . . . . . . 8
|
| 19 | 7, 18 | eqtrd 2656 |
. . . . . . 7
|
| 20 | 19 | breq2d 4665 |
. . . . . 6
|
| 21 | 20 | rabbidv 3189 |
. . . . 5
|
| 22 | oveq2 6658 |
. . . . . . 7
| |
| 23 | 22 | breq1d 4663 |
. . . . . 6
|
| 24 | 23 | cbvrabv 3199 |
. . . . 5
|
| 25 | 22 | breq1d 4663 |
. . . . . 6
|
| 26 | 25 | cbvrabv 3199 |
. . . . 5
|
| 27 | 21, 24, 26 | 3eqtr4g 2681 |
. . . 4
|
| 28 | 27 | supeq1d 8352 |
. . 3
|
| 29 | pceu.5 |
. . . 4
| |
| 30 | 2 | nnzd 11481 |
. . . 4
|
| 31 | pceu.6 |
. . . . 5
| |
| 32 | 12, 15 | div0d 10800 |
. . . . . . . 8
|
| 33 | oveq1 6657 |
. . . . . . . . 9
| |
| 34 | 33 | eqeq1d 2624 |
. . . . . . . 8
|
| 35 | 32, 34 | syl5ibrcom 237 |
. . . . . . 7
|
| 36 | 8 | eqeq1d 2624 |
. . . . . . 7
|
| 37 | 35, 36 | sylibrd 249 |
. . . . . 6
|
| 38 | 37 | necon3d 2815 |
. . . . 5
|
| 39 | 31, 38 | mpd 15 |
. . . 4
|
| 40 | pcval.2 |
. . . . 5
| |
| 41 | pceu.3 |
. . . . 5
| |
| 42 | eqid 2622 |
. . . . 5
| |
| 43 | 40, 41, 42 | pcpremul 15548 |
. . . 4
|
| 44 | 29, 30, 16, 5, 39, 43 | syl122anc 1335 |
. . 3
|
| 45 | 3, 16 | div0d 10800 |
. . . . . . . 8
|
| 46 | oveq1 6657 |
. . . . . . . . 9
| |
| 47 | 46 | eqeq1d 2624 |
. . . . . . . 8
|
| 48 | 45, 47 | syl5ibrcom 237 |
. . . . . . 7
|
| 49 | 9 | eqeq1d 2624 |
. . . . . . 7
|
| 50 | 48, 49 | sylibrd 249 |
. . . . . 6
|
| 51 | 50 | necon3d 2815 |
. . . . 5
|
| 52 | 31, 51 | mpd 15 |
. . . 4
|
| 53 | 11 | nnzd 11481 |
. . . 4
|
| 54 | pcval.1 |
. . . . 5
| |
| 55 | pceu.4 |
. . . . 5
| |
| 56 | eqid 2622 |
. . . . 5
| |
| 57 | 54, 55, 56 | pcpremul 15548 |
. . . 4
|
| 58 | 29, 13, 52, 53, 15, 57 | syl122anc 1335 |
. . 3
|
| 59 | 28, 44, 58 | 3eqtr4d 2666 |
. 2
|
| 60 | prmuz2 15408 |
. . . . . 6
| |
| 61 | 29, 60 | syl 17 |
. . . . 5
|
| 62 | eqid 2622 |
. . . . . . 7
| |
| 63 | 62, 40 | pcprecl 15544 |
. . . . . 6
|
| 64 | 63 | simpld 475 |
. . . . 5
|
| 65 | 61, 30, 16, 64 | syl12anc 1324 |
. . . 4
|
| 66 | 65 | nn0cnd 11353 |
. . 3
|
| 67 | eqid 2622 |
. . . . . . 7
| |
| 68 | 67, 41 | pcprecl 15544 |
. . . . . 6
|
| 69 | 68 | simpld 475 |
. . . . 5
|
| 70 | 61, 5, 39, 69 | syl12anc 1324 |
. . . 4
|
| 71 | 70 | nn0cnd 11353 |
. . 3
|
| 72 | eqid 2622 |
. . . . . . 7
| |
| 73 | 72, 54 | pcprecl 15544 |
. . . . . 6
|
| 74 | 73 | simpld 475 |
. . . . 5
|
| 75 | 61, 13, 52, 74 | syl12anc 1324 |
. . . 4
|
| 76 | 75 | nn0cnd 11353 |
. . 3
|
| 77 | eqid 2622 |
. . . . . . 7
| |
| 78 | 77, 55 | pcprecl 15544 |
. . . . . 6
|
| 79 | 78 | simpld 475 |
. . . . 5
|
| 80 | 61, 53, 15, 79 | syl12anc 1324 |
. . . 4
|
| 81 | 80 | nn0cnd 11353 |
. . 3
|
| 82 | 66, 71, 76, 81 | addsubeq4d 10443 |
. 2
|
| 83 | 59, 82 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 |
| This theorem is referenced by: pceu 15551 |
| Copyright terms: Public domain | W3C validator |