Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltmnf2 Structured version   Visualization version   Unicode version

Theorem pimltmnf2 40911
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -oo, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltmnf2.1  |-  F/_ x F
pimltmnf2.2  |-  ( ph  ->  F : A --> RR )
Assertion
Ref Expression
pimltmnf2  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  < -oo }  =  (/) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem pimltmnf2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . 4  |-  F/_ x A
2 nfcv 2764 . . . 4  |-  F/_ y A
3 nfv 1843 . . . 4  |-  F/ y ( F `  x
)  < -oo
4 pimltmnf2.1 . . . . . 6  |-  F/_ x F
5 nfcv 2764 . . . . . 6  |-  F/_ x
y
64, 5nffv 6198 . . . . 5  |-  F/_ x
( F `  y
)
7 nfcv 2764 . . . . 5  |-  F/_ x  <
8 nfcv 2764 . . . . 5  |-  F/_ x -oo
96, 7, 8nfbr 4699 . . . 4  |-  F/ x
( F `  y
)  < -oo
10 fveq2 6191 . . . . 5  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1110breq1d 4663 . . . 4  |-  ( x  =  y  ->  (
( F `  x
)  < -oo  <->  ( F `  y )  < -oo ) )
121, 2, 3, 9, 11cbvrab 3198 . . 3  |-  { x  e.  A  |  ( F `  x )  < -oo }  =  {
y  e.  A  | 
( F `  y
)  < -oo }
1312a1i 11 . 2  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  < -oo }  =  { y  e.  A  |  ( F `
 y )  < -oo } )
14 mnfxr 10096 . . . . . . 7  |- -oo  e.  RR*
1514a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  -> -oo  e.  RR* )
16 pimltmnf2.2 . . . . . . . 8  |-  ( ph  ->  F : A --> RR )
1716ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  RR )
1817rexrd 10089 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  RR* )
1917mnfltd 11958 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  -> -oo  <  ( F `  y ) )
2015, 18, 19xrltled 39486 . . . . 5  |-  ( (
ph  /\  y  e.  A )  -> -oo  <_  ( F `  y ) )
2115, 18xrlenltd 10104 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  ( -oo  <_  ( F `  y )  <->  -.  ( F `  y )  < -oo ) )
2220, 21mpbid 222 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  -.  ( F `  y )  < -oo )
2322ralrimiva 2966 . . 3  |-  ( ph  ->  A. y  e.  A  -.  ( F `  y
)  < -oo )
24 rabeq0 3957 . . 3  |-  ( { y  e.  A  | 
( F `  y
)  < -oo }  =  (/)  <->  A. y  e.  A  -.  ( F `  y )  < -oo )
2523, 24sylibr 224 . 2  |-  ( ph  ->  { y  e.  A  |  ( F `  y )  < -oo }  =  (/) )
2613, 25eqtrd 2656 1  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  < -oo }  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   {crab 2916   (/)c0 3915   class class class wbr 4653   -->wf 5884   ` cfv 5888   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  smfpimltxr  40956
  Copyright terms: Public domain W3C validator