Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxr Structured version   Visualization version   Unicode version

Theorem smfpimltxr 40956
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltxr.x  |-  F/_ x F
smfpimltxr.s  |-  ( ph  ->  S  e. SAlg )
smfpimltxr.f  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
smfpimltxr.d  |-  D  =  dom  F
smfpimltxr.a  |-  ( ph  ->  A  e.  RR* )
Assertion
Ref Expression
smfpimltxr  |-  ( ph  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) )
Distinct variable groups:    x, A    x, D
Allowed substitution hints:    ph( x)    S( x)    F( x)

Proof of Theorem smfpimltxr
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . 6  |-  ( A  = +oo  ->  (
( F `  x
)  <  A  <->  ( F `  x )  < +oo ) )
21rabbidv 3189 . . . . 5  |-  ( A  = +oo  ->  { x  e.  D  |  ( F `  x )  <  A }  =  {
x  e.  D  | 
( F `  x
)  < +oo } )
32adantl 482 . . . 4  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  =  {
x  e.  D  | 
( F `  x
)  < +oo } )
4 smfpimltxr.x . . . . . 6  |-  F/_ x F
5 smfpimltxr.f . . . . . . . 8  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
6 smfpimltxr.s . . . . . . . . 9  |-  ( ph  ->  S  e. SAlg )
7 smfpimltxr.d . . . . . . . . 9  |-  D  =  dom  F
84, 6, 7issmff 40943 . . . . . . . 8  |-  ( ph  ->  ( F  e.  (SMblFn `  S )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) ) )
95, 8mpbid 222 . . . . . . 7  |-  ( ph  ->  ( D  C_  U. S  /\  F : D --> RR  /\  A. a  e.  RR  {
x  e.  D  | 
( F `  x
)  <  a }  e.  ( St  D ) ) )
109simp2d 1074 . . . . . 6  |-  ( ph  ->  F : D --> RR )
114, 10pimltpnf2 40923 . . . . 5  |-  ( ph  ->  { x  e.  D  |  ( F `  x )  < +oo }  =  D )
1211adantr 481 . . . 4  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  ( F `  x )  < +oo }  =  D )
13 eqidd 2623 . . . 4  |-  ( (
ph  /\  A  = +oo )  ->  D  =  D )
143, 12, 133eqtrd 2660 . . 3  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  =  D )
159simp1d 1073 . . . . . . 7  |-  ( ph  ->  D  C_  U. S )
166, 15restuni4 39304 . . . . . 6  |-  ( ph  ->  U. ( St  D )  =  D )
1716eqcomd 2628 . . . . 5  |-  ( ph  ->  D  =  U. ( St  D ) )
185dmexd 39422 . . . . . . . 8  |-  ( ph  ->  dom  F  e.  _V )
197, 18syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  D  e.  _V )
20 eqid 2622 . . . . . . 7  |-  ( St  D )  =  ( St  D )
216, 19, 20subsalsal 40577 . . . . . 6  |-  ( ph  ->  ( St  D )  e. SAlg )
2221salunid 40571 . . . . 5  |-  ( ph  ->  U. ( St  D )  e.  ( St  D ) )
2317, 22eqeltrd 2701 . . . 4  |-  ( ph  ->  D  e.  ( St  D ) )
2423adantr 481 . . 3  |-  ( (
ph  /\  A  = +oo )  ->  D  e.  ( St  D ) )
2514, 24eqeltrd 2701 . 2  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D ) )
26 neqne 2802 . . . 4  |-  ( -.  A  = +oo  ->  A  =/= +oo )
2726adantl 482 . . 3  |-  ( (
ph  /\  -.  A  = +oo )  ->  A  =/= +oo )
28 breq2 4657 . . . . . . . . 9  |-  ( A  = -oo  ->  (
( F `  x
)  <  A  <->  ( F `  x )  < -oo ) )
2928rabbidv 3189 . . . . . . . 8  |-  ( A  = -oo  ->  { x  e.  D  |  ( F `  x )  <  A }  =  {
x  e.  D  | 
( F `  x
)  < -oo } )
3029adantl 482 . . . . . . 7  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  =  {
x  e.  D  | 
( F `  x
)  < -oo } )
3110adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  = -oo )  ->  F : D
--> RR )
324, 31pimltmnf2 40911 . . . . . . 7  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  ( F `  x )  < -oo }  =  (/) )
3330, 32eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  =  (/) )
34210sald 40568 . . . . . . 7  |-  ( ph  -> 
(/)  e.  ( St  D
) )
3534adantr 481 . . . . . 6  |-  ( (
ph  /\  A  = -oo )  ->  (/)  e.  ( St  D ) )
3633, 35eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D ) )
3736adantlr 751 . . . 4  |-  ( ( ( ph  /\  A  =/= +oo )  /\  A  = -oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D ) )
38 simpll 790 . . . . 5  |-  ( ( ( ph  /\  A  =/= +oo )  /\  -.  A  = -oo )  ->  ph )
39 smfpimltxr.a . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
4038, 39syl 17 . . . . . 6  |-  ( ( ( ph  /\  A  =/= +oo )  /\  -.  A  = -oo )  ->  A  e.  RR* )
41 neqne 2802 . . . . . . 7  |-  ( -.  A  = -oo  ->  A  =/= -oo )
4241adantl 482 . . . . . 6  |-  ( ( ( ph  /\  A  =/= +oo )  /\  -.  A  = -oo )  ->  A  =/= -oo )
43 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  A  =/= +oo )  /\  -.  A  = -oo )  ->  A  =/= +oo )
4440, 42, 43xrred 39581 . . . . 5  |-  ( ( ( ph  /\  A  =/= +oo )  /\  -.  A  = -oo )  ->  A  e.  RR )
456adantr 481 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  S  e. SAlg
)
465adantr 481 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  F  e.  (SMblFn `  S )
)
47 simpr 477 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  A  e.  RR )
484, 45, 46, 7, 47smfpreimaltf 40945 . . . . 5  |-  ( (
ph  /\  A  e.  RR )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D ) )
4938, 44, 48syl2anc 693 . . . 4  |-  ( ( ( ph  /\  A  =/= +oo )  /\  -.  A  = -oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) )
5037, 49pm2.61dan 832 . . 3  |-  ( (
ph  /\  A  =/= +oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D ) )
5127, 50syldan 487 . 2  |-  ( (
ph  /\  -.  A  = +oo )  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D ) )
5225, 51pm2.61dan 832 1  |-  ( ph  ->  { x  e.  D  |  ( F `  x )  <  A }  e.  ( St  D
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ioo 12179  df-ico 12181  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  smfpimltxrmpt  40967
  Copyright terms: Public domain W3C validator