MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1id Structured version   Visualization version   Unicode version

Theorem pj1id 18112
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a  |-  .+  =  ( +g  `  G )
pj1eu.s  |-  .(+)  =  (
LSSum `  G )
pj1eu.o  |-  .0.  =  ( 0g `  G )
pj1eu.z  |-  Z  =  (Cntz `  G )
pj1eu.2  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
pj1eu.3  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pj1eu.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
pj1eu.5  |-  ( ph  ->  T  C_  ( Z `  U ) )
pj1f.p  |-  P  =  ( proj1 `  G )
Assertion
Ref Expression
pj1id  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  X  =  ( ( ( T P U ) `  X )  .+  (
( U P T ) `  X ) ) )

Proof of Theorem pj1id
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . . . . 7  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
2 subgrcl 17599 . . . . . . 7  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
31, 2syl 17 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 eqid 2622 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
54subgss 17595 . . . . . . 7  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
61, 5syl 17 . . . . . 6  |-  ( ph  ->  T  C_  ( Base `  G ) )
7 pj1eu.3 . . . . . . 7  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
84subgss 17595 . . . . . . 7  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
97, 8syl 17 . . . . . 6  |-  ( ph  ->  U  C_  ( Base `  G ) )
103, 6, 93jca 1242 . . . . 5  |-  ( ph  ->  ( G  e.  Grp  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) ) )
11 pj1eu.a . . . . . 6  |-  .+  =  ( +g  `  G )
12 pj1eu.s . . . . . 6  |-  .(+)  =  (
LSSum `  G )
13 pj1f.p . . . . . 6  |-  P  =  ( proj1 `  G )
144, 11, 12, 13pj1val 18108 . . . . 5  |-  ( ( ( G  e.  Grp  /\  T  C_  ( Base `  G )  /\  U  C_  ( Base `  G
) )  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  =  (
iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) ) )
1510, 14sylan 488 . . . 4  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  =  (
iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) ) )
16 pj1eu.o . . . . . 6  |-  .0.  =  ( 0g `  G )
17 pj1eu.z . . . . . 6  |-  Z  =  (Cntz `  G )
18 pj1eu.4 . . . . . 6  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
19 pj1eu.5 . . . . . 6  |-  ( ph  ->  T  C_  ( Z `  U ) )
2011, 12, 16, 17, 1, 7, 18, 19pj1eu 18109 . . . . 5  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  E! x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )
21 riotacl2 6624 . . . . 5  |-  ( E! x  e.  T  E. y  e.  U  X  =  ( x  .+  y )  ->  ( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )  e. 
{ x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
2220, 21syl 17 . . . 4  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
2315, 22eqeltrd 2701 . . 3  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  ( ( T P U ) `  X )  e.  {
x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) } )
24 oveq1 6657 . . . . . . 7  |-  ( x  =  ( ( T P U ) `  X )  ->  (
x  .+  y )  =  ( ( ( T P U ) `
 X )  .+  y ) )
2524eqeq2d 2632 . . . . . 6  |-  ( x  =  ( ( T P U ) `  X )  ->  ( X  =  ( x  .+  y )  <->  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2625rexbidv 3052 . . . . 5  |-  ( x  =  ( ( T P U ) `  X )  ->  ( E. y  e.  U  X  =  ( x  .+  y )  <->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2726elrab 3363 . . . 4  |-  ( ( ( T P U ) `  X )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) }  <->  ( ( ( T P U ) `
 X )  e.  T  /\  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) ) )
2827simprbi 480 . . 3  |-  ( ( ( T P U ) `  X )  e.  { x  e.  T  |  E. y  e.  U  X  =  ( x  .+  y ) }  ->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) )
2923, 28syl 17 . 2  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  E. y  e.  U  X  =  ( ( ( T P U ) `  X )  .+  y
) )
30 simprr 796 . . 3  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( ( ( T P U ) `  X
)  .+  y )
)
313ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  G  e.  Grp )
329ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  U  C_  ( Base `  G ) )
336ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  T  C_  ( Base `  G ) )
34 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  e.  ( T  .(+)  U )
)
3512, 17lsmcom2 18070 . . . . . . . . 9  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  =  ( U 
.(+)  T ) )
361, 7, 19, 35syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( T  .(+)  U )  =  ( U  .(+)  T ) )
3736ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( T  .(+)  U )  =  ( U 
.(+)  T ) )
3834, 37eleqtrd 2703 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  e.  ( U  .(+)  T )
)
394, 11, 12, 13pj1val 18108 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  U  C_  ( Base `  G )  /\  T  C_  ( Base `  G
) )  /\  X  e.  ( U  .(+)  T ) )  ->  ( ( U P T ) `  X )  =  (
iota_ u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) ) )
4031, 32, 33, 38, 39syl31anc 1329 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( U P T ) `  X )  =  (
iota_ u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) ) )
4111, 12, 16, 17, 1, 7, 18, 19, 13pj1f 18110 . . . . . . . . 9  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )
4241ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( T P U ) : ( T  .(+)  U ) --> T )
4342, 34ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( T P U ) `  X )  e.  T
)
4419ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  T  C_  ( Z `  U )
)
4544, 43sseldd 3604 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( T P U ) `  X )  e.  ( Z `  U ) )
46 simprl 794 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  y  e.  U
)
4711, 17cntzi 17762 . . . . . . . . 9  |-  ( ( ( ( T P U ) `  X
)  e.  ( Z `
 U )  /\  y  e.  U )  ->  ( ( ( T P U ) `  X )  .+  y
)  =  ( y 
.+  ( ( T P U ) `  X ) ) )
4845, 46, 47syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( ( T P U ) `
 X )  .+  y )  =  ( y  .+  ( ( T P U ) `
 X ) ) )
4930, 48eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( y  .+  ( ( T P U ) `
 X ) ) )
50 oveq2 6658 . . . . . . . . 9  |-  ( v  =  ( ( T P U ) `  X )  ->  (
y  .+  v )  =  ( y  .+  ( ( T P U ) `  X
) ) )
5150eqeq2d 2632 . . . . . . . 8  |-  ( v  =  ( ( T P U ) `  X )  ->  ( X  =  ( y  .+  v )  <->  X  =  ( y  .+  (
( T P U ) `  X ) ) ) )
5251rspcev 3309 . . . . . . 7  |-  ( ( ( ( T P U ) `  X
)  e.  T  /\  X  =  ( y  .+  ( ( T P U ) `  X
) ) )  ->  E. v  e.  T  X  =  ( y  .+  v ) )
5343, 49, 52syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  E. v  e.  T  X  =  ( y  .+  v ) )
54 simpll 790 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ph )
55 incom 3805 . . . . . . . . . 10  |-  ( U  i^i  T )  =  ( T  i^i  U
)
5655, 18syl5eq 2668 . . . . . . . . 9  |-  ( ph  ->  ( U  i^i  T
)  =  {  .0.  } )
5717, 1, 7, 19cntzrecd 18091 . . . . . . . . 9  |-  ( ph  ->  U  C_  ( Z `  T ) )
5811, 12, 16, 17, 7, 1, 56, 57pj1eu 18109 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( U  .(+)  T ) )  ->  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )
5954, 38, 58syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )
60 oveq1 6657 . . . . . . . . . 10  |-  ( u  =  y  ->  (
u  .+  v )  =  ( y  .+  v ) )
6160eqeq2d 2632 . . . . . . . . 9  |-  ( u  =  y  ->  ( X  =  ( u  .+  v )  <->  X  =  ( y  .+  v
) ) )
6261rexbidv 3052 . . . . . . . 8  |-  ( u  =  y  ->  ( E. v  e.  T  X  =  ( u  .+  v )  <->  E. v  e.  T  X  =  ( y  .+  v
) ) )
6362riota2 6633 . . . . . . 7  |-  ( ( y  e.  U  /\  E! u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )  -> 
( E. v  e.  T  X  =  ( y  .+  v )  <-> 
( iota_ u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )  =  y ) )
6446, 59, 63syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( E. v  e.  T  X  =  ( y  .+  v
)  <->  ( iota_ u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )  =  y ) )
6553, 64mpbid 222 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( iota_ u  e.  U  E. v  e.  T  X  =  ( u  .+  v ) )  =  y )
6640, 65eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( U P T ) `  X )  =  y )
6766oveq2d 6666 . . 3  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  ( ( ( T P U ) `
 X )  .+  ( ( U P T ) `  X
) )  =  ( ( ( T P U ) `  X
)  .+  y )
)
6830, 67eqtr4d 2659 . 2  |-  ( ( ( ph  /\  X  e.  ( T  .(+)  U ) )  /\  ( y  e.  U  /\  X  =  ( ( ( T P U ) `
 X )  .+  y ) ) )  ->  X  =  ( ( ( T P U ) `  X
)  .+  ( ( U P T ) `  X ) ) )
6929, 68rexlimddv 3035 1  |-  ( (
ph  /\  X  e.  ( T  .(+)  U ) )  ->  X  =  ( ( ( T P U ) `  X )  .+  (
( U P T ) `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   E!wreu 2914   {crab 2916    i^i cin 3573    C_ wss 3574   {csn 4177   -->wf 5884   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049   proj1cpj1 18050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-pj1 18052
This theorem is referenced by:  pj1eq  18113  pj1ghm  18116  pj1lmhm  19100
  Copyright terms: Public domain W3C validator