HomeHome Metamath Proof Explorer
Theorem List (p. 196 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 19501-19600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmplmon2mul 19501* Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  D  =  {
 f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  C  =  ( Base `  R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  .xb 
 =  ( .r `  P )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  Y  e.  D )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  G  e.  C )   =>    |-  ( ph  ->  (
 ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  )
 )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( F  .x.  G ) ,  .0.  ) ) )
 
Theoremmplind 19502* Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |-  K  =  ( Base `  R )   &    |-  V  =  ( I mVar  R )   &    |-  Y  =  ( I mPoly  R )   &    |-  .+  =  ( +g  `  Y )   &    |- 
 .x.  =  ( .r `  Y )   &    |-  C  =  (algSc `  Y )   &    |-  B  =  (
 Base `  Y )   &    |-  (
 ( ph  /\  ( x  e.  H  /\  y  e.  H ) )  ->  ( x  .+  y )  e.  H )   &    |-  (
 ( ph  /\  ( x  e.  H  /\  y  e.  H ) )  ->  ( x  .x.  y )  e.  H )   &    |-  (
 ( ph  /\  x  e.  K )  ->  ( C `  x )  e.  H )   &    |-  ( ( ph  /\  x  e.  I ) 
 ->  ( V `  x )  e.  H )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  I  e.  _V )   &    |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  X  e.  H )
 
Theoremmplcoe4 19503* Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  D  =  {
 f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  B  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X  =  ( P  gsumg  ( k  e.  D  |->  ( y  e.  D  |->  if ( y  =  k ,  ( X `  k ) ,  .0.  ) ) ) ) )
 
10.10.2  Polynomial evaluation
 
Syntaxces 19504 Evaluation of a multivariate polynomial in a subring.
 class evalSub
 
Syntaxcevl 19505 Evaluation of a multivariate polynomial.
 class eval
 
Definitiondf-evls 19506* Define the evaluation map for the polynomial algebra. The function  ( (
I evalSub  S ) `  R
) : V --> ( S  ^m  ( S  ^m  I ) ) makes sense when  I is an index set,  S is a ring,  R is a subring of  S, and where  V is the set of polynomials in  ( I mPoly  R
). This function maps an element of the formal polynomial algebra (with coefficients in  R) to a function from assignments  I
--> S of the variables to elements of 
S formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |- evalSub  =  ( i  e.  _V ,  s  e.  CRing  |->  [_ ( Base `  s )  /  b ]_ ( r  e.  (SubRing `  s )  |-> 
 [_ ( i mPoly  (
 ss  r ) )  /  w ]_ ( iota_ f  e.  ( w RingHom  ( s  ^s  ( b  ^m  i ) ) ) ( ( f  o.  (algSc `  w ) )  =  ( x  e.  r  |->  ( ( b  ^m  i )  X.  { x } ) )  /\  ( f  o.  (
 i mVar  ( ss  r ) ) )  =  ( x  e.  i  |->  ( g  e.  ( b 
 ^m  i )  |->  ( g `  x ) ) ) ) ) ) )
 
Definitiondf-evl 19507* A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015.)
 |- eval  =  ( i  e.  _V ,  r  e.  _V  |->  ( ( i evalSub  r
 ) `  ( Base `  r ) ) )
 
Theoremevlslem4 19508* The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  .x. 
 =  ( .r `  R )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ( ph  /\  x  e.  I ) 
 ->  X  e.  B )   &    |-  ( ( ph  /\  y  e.  J )  ->  Y  e.  B )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  J  e.  W )   =>    |-  ( ph  ->  (
 ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) supp  .0.  )  C_  (
 ( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp 
 .0.  ) ) )
 
Theorempsrbagfsupp 19509* Finite bags have finite nonzero-support. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.)
 |-  D  =  { h  e.  ( NN0  ^m  I
 )  |  ( `' h " NN )  e.  Fin }   =>    |-  ( ( X  e.  D  /\  I  e.  V )  ->  X finSupp  0 )
 
Theorempsrbagev1 19510* A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.)
 |-  D  =  { h  e.  ( NN0  ^m  I
 )  |  ( `' h " NN )  e.  Fin }   &    |-  C  =  (
 Base `  T )   &    |-  .x.  =  (.g `  T )   &    |-  .0.  =  ( 0g `  T )   &    |-  ( ph  ->  T  e. CMnd )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  G : I --> C )   &    |-  ( ph  ->  I  e.  _V )   =>    |-  ( ph  ->  (
 ( B  oF  .x.  G ) : I --> C  /\  ( B  oF  .x.  G ) finSupp  .0.  ) )
 
Theorempsrbagev2 19511* Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.)
 |-  D  =  { h  e.  ( NN0  ^m  I
 )  |  ( `' h " NN )  e.  Fin }   &    |-  C  =  (
 Base `  T )   &    |-  .x.  =  (.g `  T )   &    |-  .0.  =  ( 0g `  T )   &    |-  ( ph  ->  T  e. CMnd )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  G : I --> C )   &    |-  ( ph  ->  I  e.  _V )   =>    |-  ( ph  ->  ( T  gsumg  ( B  oF  .x.  G ) )  e.  C )
 
Theoremevlslem2 19512* A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  .x.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  ( ph  ->  I  e.  _V )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  S  e.  CRing
 )   &    |-  ( ph  ->  E  e.  ( P  GrpHom  S ) )   &    |-  ( ( ph  /\  ( ( x  e.  B  /\  y  e.  B )  /\  (
 j  e.  D  /\  i  e.  D )
 ) )  ->  ( E `  ( k  e.  D  |->  if ( k  =  ( j  oF  +  i ) ,  (
 ( x `  j
 ) ( .r `  R ) ( y `
  i ) ) ,  .0.  ) ) )  =  ( ( E `  ( k  e.  D  |->  if (
 k  =  j ,  ( x `  j
 ) ,  .0.  )
 ) )  .x.  ( E `  ( k  e.  D  |->  if ( k  =  i ,  ( y `
  i ) ,  .0.  ) ) ) ) )   =>    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( E `  ( x ( .r
 `  P ) y ) )  =  ( ( E `  x )  .x.  ( E `  y ) ) )
 
Theoremevlslem6 19513* Lemma for evlseu 19516. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  C  =  ( Base `  S )   &    |-  K  =  ( Base `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  T  =  (mulGrp `  S )   &    |-  .^  =  (.g `  T )   &    |- 
 .x.  =  ( .r `  S )   &    |-  V  =  ( I mVar  R )   &    |-  E  =  ( p  e.  B  |->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( p `  b ) )  .x.  ( T  gsumg  (
 b  oF  .^  G ) ) ) ) ) )   &    |-  ( ph  ->  I  e.  _V )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  F  e.  ( R RingHom  S ) )   &    |-  ( ph  ->  G : I --> C )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( b  e.  D  |->  ( ( F `  ( Y `  b ) )  .x.  ( T  gsumg  (
 b  oF  .^  G ) ) ) ) : D --> C  /\  ( b  e.  D  |->  ( ( F `  ( Y `  b ) )  .x.  ( T  gsumg  (
 b  oF  .^  G ) ) ) ) finSupp  ( 0g `  S ) ) )
 
Theoremevlslem3 19514* Lemma for evlseu 19516. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  C  =  ( Base `  S )   &    |-  K  =  ( Base `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  T  =  (mulGrp `  S )   &    |-  .^  =  (.g `  T )   &    |- 
 .x.  =  ( .r `  S )   &    |-  V  =  ( I mVar  R )   &    |-  E  =  ( p  e.  B  |->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( p `  b ) )  .x.  ( T  gsumg  (
 b  oF  .^  G ) ) ) ) ) )   &    |-  ( ph  ->  I  e.  _V )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  F  e.  ( R RingHom  S ) )   &    |-  ( ph  ->  G : I --> C )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  H  e.  K )   =>    |-  ( ph  ->  ( E `  ( x  e.  D  |->  if ( x  =  A ,  H ,  .0.  ) ) )  =  ( ( F `  H )  .x.  ( T 
 gsumg  ( A  oF  .^  G ) ) ) )
 
Theoremevlslem1 19515* Lemma for evlseu 19516, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  C  =  ( Base `  S )   &    |-  K  =  ( Base `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  T  =  (mulGrp `  S )   &    |-  .^  =  (.g `  T )   &    |- 
 .x.  =  ( .r `  S )   &    |-  V  =  ( I mVar  R )   &    |-  E  =  ( p  e.  B  |->  ( S  gsumg  ( b  e.  D  |->  ( ( F `  ( p `  b ) )  .x.  ( T  gsumg  (
 b  oF  .^  G ) ) ) ) ) )   &    |-  ( ph  ->  I  e.  _V )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  F  e.  ( R RingHom  S ) )   &    |-  ( ph  ->  G : I --> C )   &    |-  A  =  (algSc `  P )   =>    |-  ( ph  ->  ( E  e.  ( P RingHom  S )  /\  ( E  o.  A )  =  F  /\  ( E  o.  V )  =  G ) )
 
Theoremevlseu 19516* For a given interpretation of the variables  G and of the scalars  F, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  C  =  (
 Base `  S )   &    |-  A  =  (algSc `  P )   &    |-  V  =  ( I mVar  R )   &    |-  ( ph  ->  I  e.  _V )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  F  e.  ( R RingHom  S ) )   &    |-  ( ph  ->  G : I --> C )   =>    |-  ( ph  ->  E! m  e.  ( P RingHom  S )
 ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )
 )
 
Theoremreldmevls 19517 Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.)
 |- 
 Rel  dom evalSub
 
Theoremmpfrcl 19518 Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.)
 |-  Q  =  ran  (
 ( I evalSub  S ) `  R )   =>    |-  ( X  e.  Q  ->  ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
 ) )
 
Theoremevlsval 19519* Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  W  =  ( I mPoly  U )   &    |-  V  =  ( I mVar  U )   &    |-  U  =  ( Ss  R )   &    |-  T  =  ( S  ^s  ( B  ^m  I
 ) )   &    |-  B  =  (
 Base `  S )   &    |-  A  =  (algSc `  W )   &    |-  X  =  ( x  e.  R  |->  ( ( B  ^m  I )  X.  { x } ) )   &    |-  Y  =  ( x  e.  I  |->  ( g  e.  ( B  ^m  I )  |->  ( g `  x ) ) )   =>    |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) )  ->  Q  =  ( iota_ f  e.  ( W RingHom  T ) ( ( f  o.  A )  =  X  /\  (
 f  o.  V )  =  Y ) ) )
 
Theoremevlsval2 19520* Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  W  =  ( I mPoly  U )   &    |-  V  =  ( I mVar  U )   &    |-  U  =  ( Ss  R )   &    |-  T  =  ( S  ^s  ( B  ^m  I
 ) )   &    |-  B  =  (
 Base `  S )   &    |-  A  =  (algSc `  W )   &    |-  X  =  ( x  e.  R  |->  ( ( B  ^m  I )  X.  { x } ) )   &    |-  Y  =  ( x  e.  I  |->  ( g  e.  ( B  ^m  I )  |->  ( g `  x ) ) )   =>    |-  ( ( I  e.  Z  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) )  ->  ( Q  e.  ( W RingHom  T ) 
 /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
 
Theoremevlsrhm 19521 Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  W  =  ( I mPoly  U )   &    |-  U  =  ( Ss  R )   &    |-  T  =  ( S  ^s  ( B  ^m  I
 ) )   &    |-  B  =  (
 Base `  S )   =>    |-  ( ( I  e.  V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) ) 
 ->  Q  e.  ( W RingHom  T ) )
 
Theoremevlssca 19522 Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  W  =  ( I mPoly  U )   &    |-  U  =  ( Ss  R )   &    |-  B  =  (
 Base `  S )   &    |-  A  =  (algSc `  W )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  R  e.  (SubRing `  S ) )   &    |-  ( ph  ->  X  e.  R )   =>    |-  ( ph  ->  ( Q `  ( A `
  X ) )  =  ( ( B 
 ^m  I )  X.  { X } ) )
 
Theoremevlsvar 19523* Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  V  =  ( I mVar 
 U )   &    |-  U  =  ( Ss  R )   &    |-  B  =  (
 Base `  S )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  R  e.  (SubRing `  S ) )   &    |-  ( ph  ->  X  e.  I )   =>    |-  ( ph  ->  ( Q `  ( V `
  X ) )  =  ( g  e.  ( B  ^m  I
 )  |->  ( g `  X ) ) )
 
Theoremevlval 19524 Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
 |-  Q  =  ( I eval 
 R )   &    |-  B  =  (
 Base `  R )   =>    |-  Q  =  ( ( I evalSub  R ) `  B )
 
Theoremevlrhm 19525 The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  Q  =  ( I eval 
 R )   &    |-  B  =  (
 Base `  R )   &    |-  W  =  ( I mPoly  R )   &    |-  T  =  ( R  ^s  ( B  ^m  I ) )   =>    |-  ( ( I  e.  V  /\  R  e.  CRing
 )  ->  Q  e.  ( W RingHom  T ) )
 
Theoremevlsscasrng 19526 The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  O  =  ( I eval 
 S )   &    |-  W  =  ( I mPoly  U )   &    |-  U  =  ( Ss  R )   &    |-  P  =  ( I mPoly  S )   &    |-  B  =  ( Base `  S )   &    |-  A  =  (algSc `  W )   &    |-  C  =  (algSc `  P )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  R  e.  (SubRing `  S ) )   &    |-  ( ph  ->  X  e.  R )   =>    |-  ( ph  ->  ( Q `  ( A `
  X ) )  =  ( O `  ( C `  X ) ) )
 
Theoremevlsca 19527 Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019.)
 |-  Q  =  ( I eval 
 S )   &    |-  W  =  ( I mPoly  S )   &    |-  B  =  ( Base `  S )   &    |-  A  =  (algSc `  W )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( Q `  ( A `
  X ) )  =  ( ( B 
 ^m  I )  X.  { X } ) )
 
Theoremevlsvarsrng 19528 The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.)
 |-  Q  =  ( ( I evalSub  S ) `  R )   &    |-  O  =  ( I eval 
 S )   &    |-  V  =  ( I mVar  U )   &    |-  U  =  ( Ss  R )   &    |-  B  =  (
 Base `  S )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  R  e.  (SubRing `  S ) )   &    |-  ( ph  ->  X  e.  I )   =>    |-  ( ph  ->  ( Q `  ( V `
  X ) )  =  ( O `  ( V `  X ) ) )
 
Theoremevlvar 19529* Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019.)
 |-  Q  =  ( I eval 
 S )   &    |-  V  =  ( I mVar  S )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  X  e.  I )   =>    |-  ( ph  ->  ( Q `  ( V `
  X ) )  =  ( g  e.  ( B  ^m  I
 )  |->  ( g `  X ) ) )
 
Theoremmpfconst 19530 Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  Q  =  ran  ( ( I evalSub  S ) `  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  R  e.  (SubRing `  S ) )   &    |-  ( ph  ->  X  e.  R )   =>    |-  ( ph  ->  ( ( B  ^m  I
 )  X.  { X } )  e.  Q )
 
Theoremmpfproj 19531* Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  Q  =  ran  ( ( I evalSub  S ) `  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  S  e.  CRing )   &    |-  ( ph  ->  R  e.  (SubRing `  S ) )   &    |-  ( ph  ->  J  e.  I )   =>    |-  ( ph  ->  ( f  e.  ( B 
 ^m  I )  |->  ( f `  J ) )  e.  Q )
 
Theoremmpfsubrg 19532 Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.)
 |-  Q  =  ran  (
 ( I evalSub  S ) `  R )   =>    |-  ( ( I  e.  V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) )  ->  Q  e.  (SubRing `  ( S  ^s  (
 ( Base `  S )  ^m  I ) ) ) )
 
Theoremmpff 19533 Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  Q  =  ran  (
 ( I evalSub  S ) `  R )   &    |-  B  =  (
 Base `  S )   =>    |-  ( F  e.  Q  ->  F : ( B  ^m  I ) --> B )
 
Theoremmpfaddcl 19534 The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  Q  =  ran  (
 ( I evalSub  S ) `  R )   &    |-  .+  =  ( +g  `  S )   =>    |-  ( ( F  e.  Q  /\  G  e.  Q )  ->  ( F  oF  .+  G )  e.  Q )
 
Theoremmpfmulcl 19535 The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  Q  =  ran  (
 ( I evalSub  S ) `  R )   &    |-  .x.  =  ( .r `  S )   =>    |-  ( ( F  e.  Q  /\  G  e.  Q )  ->  ( F  oF  .x.  G )  e.  Q )
 
Theoremmpfind 19536* Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  .x.  =  ( .r `  S )   &    |-  Q  =  ran  ( ( I evalSub  S ) `  R )   &    |-  ( ( ph  /\  (
 ( f  e.  Q  /\  ta )  /\  (
 g  e.  Q  /\  et ) ) )  ->  ze )   &    |-  ( ( ph  /\  ( ( f  e.  Q  /\  ta )  /\  ( g  e.  Q  /\  et ) ) ) 
 ->  si )   &    |-  ( x  =  ( ( B  ^m  I )  X.  { f } )  ->  ( ps  <->  ch ) )   &    |-  ( x  =  ( g  e.  ( B  ^m  I )  |->  ( g `  f ) )  ->  ( ps  <->  th ) )   &    |-  ( x  =  f  ->  ( ps  <->  ta ) )   &    |-  ( x  =  g  ->  ( ps  <->  et ) )   &    |-  ( x  =  ( f  oF  .+  g )  ->  ( ps 
 <->  ze ) )   &    |-  ( x  =  ( f  oF  .x.  g ) 
 ->  ( ps  <->  si ) )   &    |-  ( x  =  A  ->  ( ps  <->  rh ) )   &    |-  (
 ( ph  /\  f  e.  R )  ->  ch )   &    |-  (
 ( ph  /\  f  e.  I )  ->  th )   &    |-  ( ph  ->  A  e.  Q )   =>    |-  ( ph  ->  rh )
 
10.10.3  Additional definitions for (multivariate) polynomials

Remark: There are no theorems using these definitions yet!

 
Syntaxcmhp 19537 Multivariate polynomials.
 class mHomP
 
Syntaxcpsd 19538 Power series partial derivative function.
 class mPSDer
 
Syntaxcslv 19539 Select a subset of variables in a multivariate polynomial.
 class selectVars
 
Syntaxcai 19540 Algebraically independent.
 class AlgInd
 
Definitiondf-mhp 19541* Define the subspaces of order-  n homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- mHomP  =  ( i  e.  _V ,  r  e.  _V  |->  ( n  e.  NN0  |->  { f  e.  ( Base `  ( i mPoly  r ) )  |  ( f supp  ( 0g `  r ) )  C_  { g  e.  { h  e.  ( NN0  ^m  i
 )  |  ( `' h " NN )  e.  Fin }  |  sum_ j  e.  NN0  ( g `  j )  =  n } } ) )
 
Definitiondf-psd 19542* Define the differentiation operation on multivariate polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- mPSDer  =  ( i  e.  _V ,  r  e.  _V  |->  ( x  e.  i  |->  ( f  e.  ( Base `  ( i mPwSer  r
 ) )  |->  ( k  e.  { h  e.  ( NN0  ^m  i
 )  |  ( `' h " NN )  e.  Fin }  |->  ( ( ( k `  x )  +  1 )
 (.g `  r ) ( f `  ( k  oF  +  (
 y  e.  i  |->  if ( y  =  x ,  1 ,  0 ) ) ) ) ) ) ) ) )
 
Definitiondf-selv 19543* Define the "variable selection" function. The function  ( (
I selectVars  R ) `  J
) maps elements of  ( I mPoly  R ) bijectively onto  ( J mPoly  ( ( I  \  J ) mPoly 
R ) ) in the natural way, for example if  I  =  { x ,  y } and  J  =  { y } it would map  1  +  x  +  y  +  x
y  e.  ( { x ,  y } mPoly 
ZZ ) to  ( 1  +  x )  +  ( 1  +  x ) y  e.  ( { y } mPoly  ( {
x } mPoly  ZZ )
). This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- selectVars  =  ( i  e.  _V ,  r  e.  _V  |->  ( j  e.  ~P i  |->  ( f  e.  ( i mPoly  r ) 
 |->  [_ ( ( i 
 \  j ) mPoly  r
 )  /  s ]_ [_ ( x  e.  (Scalar `  s )  |->  ( x ( .s `  s
 ) ( 1r `  s ) ) ) 
 /  c ]_ (
 ( ( ( i evalSub  s ) `  (
 c  "s  r ) ) `  ( c  o.  f
 ) ) `  ( x  e.  i  |->  if ( x  e.  j ,  ( ( j mVar  (
 ( i  \  j
 ) mPoly  r ) ) `  x ) ,  (
 c  o.  ( ( ( i  \  j
 ) mVar  r ) `  x ) ) ) ) ) ) ) )
 
Definitiondf-algind 19544* Define the predicate "the set  v is algebraically independent in the algebra  w". A collection of vectors is algebraically independent if no nontrivial polynomial with elements from the subset evaluates to zero. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- AlgInd  =  ( w  e.  _V ,  k  e.  ~P ( Base `  w )  |->  { v  e.  ~P ( Base `  w )  |  Fun  `' ( f  e.  ( Base `  (
 v mPoly  ( ws  k ) ) ) 
 |->  ( ( ( ( v evalSub  w ) `  k
 ) `  f ) `  (  _I  |`  v ) ) ) } )
 
10.10.4  Univariate polynomials

According to Wikipedia ("Polynomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Polynomial) "A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than one indeterminate is called a multivariate polynomial." In this sense univariate polynomials are defined as multivariate polynomials restricted to one indeterminate/polynomial variable in the following, see ply1bascl2 19574.

According to the definition in Wikipedia "a polynomial can either be zero or can be written as the sum of a finite number of nonzero terms. Each term consists of the product of a number - called the coefficient of the term - and a finite number of indeterminates, raised to nonnegative integer powers.". By this, a term of a univariate polynomial (often also called "polynomial term") is the product of a coefficient (usually a member of the underlying ring) and the variable, raised to a nonnegative integer power.

A (univariate) polynomial which has only one term is called (univariate) monomial - therefore, the notions "term" and "monomial" are often used synonymously, see also the definition in [Lang] p. 102. Sometimes, however, a monomial is defined as power product, "a product of powers of variables with nonnegative integer exponents", see Wikipedia ("Monomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Mononomial). In [Lang] p. 101, such terms are called "primitive monomials". To avoid any ambiguity, the notion "primitive monomial" is used for such power products ("x^i") in the following, whereas the synonym for "term" ("ai x^i") will be "scaled monomial".

 
Syntaxcps1 19545 Univariate power series.
 class PwSer1
 
Syntaxcv1 19546 The base variable of a univariate power series.
 class var1
 
Syntaxcpl1 19547 Univariate polynomials.
 class Poly1
 
Syntaxcco1 19548 Coefficient function for a univariate polynomial.
 class coe1
 
Syntaxctp1 19549 Convert a univariate polynomial representation to multivariate.
 class toPoly1
 
Definitiondf-psr1 19550 Define the algebra of univariate power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |- PwSer1  =  ( r  e.  _V  |->  ( ( 1o ordPwSer  r ) `
  (/) ) )
 
Definitiondf-vr1 19551 Define the base element of a univariate power series (the  X element of the set  R [ X ] of polynomials and also the  X in the set  R [ [ X ] ] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.)
 |- var1  =  ( r  e.  _V  |->  ( ( 1o mVar  r
 ) `  (/) ) )
 
Definitiondf-ply1 19552 Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |- Poly1  =  ( r  e.  _V  |->  ( (PwSer1 `  r )s  ( Base `  ( 1o mPoly  r )
 ) ) )
 
Definitiondf-coe1 19553* Define the coefficient function for a univariate polynomial. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |- coe1  =  ( f  e.  _V  |->  ( n  e.  NN0  |->  ( f `
  ( 1o  X.  { n } ) ) ) )
 
Definitiondf-toply1 19554* Define a function which maps a coefficient function for a univariate polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |- toPoly1  =  ( f  e.  _V  |->  ( n  e.  ( NN0  ^m  1o )  |->  ( f `  ( n `
  (/) ) ) ) )
 
Theorempsr1baslem 19555 The set of finite bags on  1o is just the set of all functions from  1o to  NN0. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  ( NN0  ^m  1o )  =  { f  e.  ( NN0  ^m  1o )  |  ( `' f " NN )  e. 
 Fin }
 
Theorempsr1val 19556 Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  S  =  (PwSer1 `  R )   =>    |-  S  =  ( ( 1o ordPwSer  R ) `  (/) )
 
Theorempsr1crng 19557 The ring of univariate power series is a commutative ring. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  S  =  (PwSer1 `  R )   =>    |-  ( R  e.  CRing  ->  S  e.  CRing )
 
Theorempsr1assa 19558 The ring of univariate power series is an associative algebra. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  S  =  (PwSer1 `  R )   =>    |-  ( R  e.  CRing  ->  S  e. AssAlg )
 
Theorempsr1tos 19559 The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 2-Jun-2015.)
 |-  S  =  (PwSer1 `  R )   =>    |-  ( R  e. Toset  ->  S  e. Toset )
 
Theorempsr1bas2 19560 The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
 |-  S  =  (PwSer1 `  R )   &    |-  B  =  ( Base `  S )   &    |-  O  =  ( 1o mPwSer  R )   =>    |-  B  =  ( Base `  O )
 
Theorempsr1bas 19561 The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  S  =  (PwSer1 `  R )   &    |-  B  =  ( Base `  S )   &    |-  K  =  (
 Base `  R )   =>    |-  B  =  ( K  ^m  ( NN0  ^m 
 1o ) )
 
Theoremvr1val 19562 The value of the generator of the power series algebra (the  X in  R [ [ X ] ]). Since all univariate polynomial rings over a fixed base ring  R are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and  1o  =  { (/) } is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
 |-  X  =  (var1 `  R )   =>    |-  X  =  ( ( 1o mVar  R ) `  (/) )
 
Theoremvr1cl2 19563 The variable  X is a member of the power series algebra  R [ [ X ] ]. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  X  =  (var1 `  R )   &    |-  S  =  (PwSer1 `  R )   &    |-  B  =  ( Base `  S )   =>    |-  ( R  e.  Ring  ->  X  e.  B )
 
Theoremply1val 19564 The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  S  =  (PwSer1 `  R )   =>    |-  P  =  ( Ss  (
 Base `  ( 1o mPoly  R ) ) )
 
Theoremply1bas 19565 The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  S  =  (PwSer1 `  R )   &    |-  U  =  ( Base `  P )   =>    |-  U  =  ( Base `  ( 1o mPoly  R )
 )
 
Theoremply1lss 19566 Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  S  =  (PwSer1 `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( R  e.  Ring  ->  U  e.  ( LSubSp `  S ) )
 
Theoremply1subrg 19567 Univariate polynomials form a subring of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  S  =  (PwSer1 `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( R  e.  Ring  ->  U  e.  (SubRing `  S ) )
 
Theoremply1crng 19568 The ring of univariate polynomials is a commutative ring. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  P  =  (Poly1 `  R )   =>    |-  ( R  e.  CRing  ->  P  e.  CRing )
 
Theoremply1assa 19569 The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  P  =  (Poly1 `  R )   =>    |-  ( R  e.  CRing  ->  P  e. AssAlg )
 
Theorempsr1bascl 19570 A univariate power series is a multivariate power series on one index. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  P  =  (PwSer1 `  R )   &    |-  B  =  ( Base `  P )   =>    |-  ( F  e.  B  ->  F  e.  ( Base `  ( 1o mPwSer  R )
 ) )
 
Theorempsr1basf 19571 Univariate power series base set elements are functions. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  P  =  (PwSer1 `  R )   &    |-  B  =  ( Base `  P )   &    |-  K  =  (
 Base `  R )   =>    |-  ( F  e.  B  ->  F : (
 NN0  ^m  1o ) --> K )
 
Theoremply1basf 19572 Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  B  =  ( Base `  P )   &    |-  K  =  (
 Base `  R )   =>    |-  ( F  e.  B  ->  F : (
 NN0  ^m  1o ) --> K )
 
Theoremply1bascl 19573 A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  B  =  ( Base `  P )   =>    |-  ( F  e.  B  ->  F  e.  ( Base `  (PwSer1 `  R ) ) )
 
Theoremply1bascl2 19574 A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  P  =  (Poly1 `  R )   &    |-  B  =  ( Base `  P )   =>    |-  ( F  e.  B  ->  F  e.  ( Base `  ( 1o mPoly  R )
 ) )
 
Theoremcoe1fval 19575* Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  A  =  (coe1 `  F )   =>    |-  ( F  e.  V  ->  A  =  ( n  e.  NN0  |->  ( F `
  ( 1o  X.  { n } ) ) ) )
 
Theoremcoe1fv 19576 Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  A  =  (coe1 `  F )   =>    |-  ( ( F  e.  V  /\  N  e.  NN0 )  ->  ( A `  N )  =  ( F `  ( 1o  X.  { N } ) ) )
 
Theoremfvcoe1 19577 Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  A  =  (coe1 `  F )   =>    |-  ( ( F  e.  V  /\  X  e.  ( NN0  ^m  1o ) ) 
 ->  ( F `  X )  =  ( A `  ( X `  (/) ) ) )
 
Theoremcoe1fval3 19578* Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (PwSer1 `  R )   &    |-  G  =  ( y  e.  NN0  |->  ( 1o 
 X.  { y } )
 )   =>    |-  ( F  e.  B  ->  A  =  ( F  o.  G ) )
 
Theoremcoe1f2 19579 Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (PwSer1 `  R )   &    |-  K  =  (
 Base `  R )   =>    |-  ( F  e.  B  ->  A : NN0 --> K )
 
Theoremcoe1fval2 19580* Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (Poly1 `  R )   &    |-  G  =  ( y  e.  NN0  |->  ( 1o 
 X.  { y } )
 )   =>    |-  ( F  e.  B  ->  A  =  ( F  o.  G ) )
 
Theoremcoe1f 19581 Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (Poly1 `  R )   &    |-  K  =  (
 Base `  R )   =>    |-  ( F  e.  B  ->  A : NN0 --> K )
 
Theoremcoe1fvalcl 19582 A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (Poly1 `  R )   &    |-  K  =  (
 Base `  R )   =>    |-  ( ( F  e.  B  /\  N  e.  NN0 )  ->  ( A `  N )  e.  K )
 
Theoremcoe1sfi 19583 Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (Poly1 `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( F  e.  B  ->  A finSupp  .0.  )
 
Theoremcoe1fsupp 19584* The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (Poly1 `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  K  =  ( Base `  R )   =>    |-  ( F  e.  B  ->  A  e.  { g  e.  ( K  ^m  NN0 )  |  g finSupp  .0.  }
 )
 
Theoremmptcoe1fsupp 19585* A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.)
 |-  P  =  (Poly1 `  R )   &    |-  B  =  ( Base `  P )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Ring  /\  M  e.  B ) 
 ->  ( k  e.  NN0  |->  ( (coe1 `  M ) `  k ) ) finSupp  .0.  )
 
Theoremcoe1ae0 19586* The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.)
 |-  A  =  (coe1 `  F )   &    |-  B  =  ( Base `  P )   &    |-  P  =  (Poly1 `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( F  e.  B  ->  E. s  e.  NN0  A. n  e.  NN0  (
 s  <  n  ->  ( A `  n )  =  .0.  ) )
 
Theoremvr1cl 19587 The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.)
 |-  X  =  (var1 `  R )   &    |-  P  =  (Poly1 `  R )   &    |-  B  =  ( Base `  P )   =>    |-  ( R  e.  Ring  ->  X  e.  B )
 
Theoremopsr0 19588 Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  S  =  ( I mPwSer  R )   &    |-  O  =  ( ( I ordPwSer  R ) `  T )   &    |-  ( ph  ->  T 
 C_  ( I  X.  I ) )   =>    |-  ( ph  ->  ( 0g `  S )  =  ( 0g `  O ) )
 
Theoremopsr1 19589 One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  S  =  ( I mPwSer  R )   &    |-  O  =  ( ( I ordPwSer  R ) `  T )   &    |-  ( ph  ->  T 
 C_  ( I  X.  I ) )   =>    |-  ( ph  ->  ( 1r `  S )  =  ( 1r `  O ) )
 
Theoremmplplusg 19590 Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  Y  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  .+  =  ( +g  `  Y )   =>    |-  .+  =  ( +g  `  S )
 
Theoremmplmulr 19591 Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  Y  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  .x.  =  ( .r `  Y )   =>    |-  .x.  =  ( .r `  S )
 
Theorempsr1plusg 19592 Value of addition in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  Y  =  (PwSer1 `  R )   &    |-  S  =  ( 1o mPwSer  R )   &    |-  .+  =  ( +g  `  Y )   =>    |-  .+  =  ( +g  `  S )
 
Theorempsr1vsca 19593 Value of scalar multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  Y  =  (PwSer1 `  R )   &    |-  S  =  ( 1o mPwSer  R )   &    |-  .x.  =  ( .s `  Y )   =>    |-  .x.  =  ( .s `  S )
 
Theorempsr1mulr 19594 Value of multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  Y  =  (PwSer1 `  R )   &    |-  S  =  ( 1o mPwSer  R )   &    |-  .x.  =  ( .r `  Y )   =>    |-  .x.  =  ( .r `  S )
 
Theoremply1plusg 19595 Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.)
 |-  Y  =  (Poly1 `  R )   &    |-  S  =  ( 1o mPoly  R )   &    |-  .+  =  ( +g  `  Y )   =>    |-  .+  =  ( +g  `  S )
 
Theoremply1vsca 19596 Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.)
 |-  Y  =  (Poly1 `  R )   &    |-  S  =  ( 1o mPoly  R )   &    |-  .x.  =  ( .s `  Y )   =>    |-  .x.  =  ( .s `  S )
 
Theoremply1mulr 19597 Value of multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.)
 |-  Y  =  (Poly1 `  R )   &    |-  S  =  ( 1o mPoly  R )   &    |-  .x.  =  ( .r `  Y )   =>    |-  .x.  =  ( .r `  S )
 
Theoremressply1bas2 19598 The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.)
 |-  S  =  (Poly1 `  R )   &    |-  H  =  ( Rs  T )   &    |-  U  =  (Poly1 `  H )   &    |-  B  =  (
 Base `  U )   &    |-  ( ph  ->  T  e.  (SubRing `  R ) )   &    |-  W  =  (PwSer1 `  H )   &    |-  C  =  ( Base `  W )   &    |-  K  =  ( Base `  S )   =>    |-  ( ph  ->  B  =  ( C  i^i  K ) )
 
Theoremressply1bas 19599 A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
 |-  S  =  (Poly1 `  R )   &    |-  H  =  ( Rs  T )   &    |-  U  =  (Poly1 `  H )   &    |-  B  =  (
 Base `  U )   &    |-  ( ph  ->  T  e.  (SubRing `  R ) )   &    |-  P  =  ( Ss  B )   =>    |-  ( ph  ->  B  =  ( Base `  P )
 )
 
Theoremressply1add 19600 A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
 |-  S  =  (Poly1 `  R )   &    |-  H  =  ( Rs  T )   &    |-  U  =  (Poly1 `  H )   &    |-  B  =  (
 Base `  U )   &    |-  ( ph  ->  T  e.  (SubRing `  R ) )   &    |-  P  =  ( Ss  B )   =>    |-  ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
 )  ->  ( X ( +g  `  U ) Y )  =  ( X ( +g  `  P ) Y ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >