MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrval Structured version   Visualization version   Unicode version

Theorem pmtrval 17871
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtrval  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
Distinct variable groups:    z, D    z, T    z, P    z, V

Proof of Theorem pmtrval
Dummy variables  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5  |-  T  =  (pmTrsp `  D )
21pmtrfval 17870 . . . 4  |-  ( D  e.  V  ->  T  =  ( p  e. 
{ y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
32fveq1d 6193 . . 3  |-  ( D  e.  V  ->  ( T `  P )  =  ( ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) `  P ) )
433ad2ant1 1082 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  =  ( ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) `  P ) )
5 elpw2g 4827 . . . . . 6  |-  ( D  e.  V  ->  ( P  e.  ~P D  <->  P 
C_  D ) )
65biimpar 502 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D )  ->  P  e.  ~P D
)
763adant3 1081 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  ~P D )
8 simp3 1063 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  ~~  2o )
9 breq1 4656 . . . . 5  |-  ( y  =  P  ->  (
y  ~~  2o  <->  P  ~~  2o ) )
109elrab 3363 . . . 4  |-  ( P  e.  { y  e. 
~P D  |  y 
~~  2o }  <->  ( P  e.  ~P D  /\  P  ~~  2o ) )
117, 8, 10sylanbrc 698 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  { y  e.  ~P D  |  y  ~~  2o } )
12 mptexg 6484 . . . 4  |-  ( D  e.  V  ->  (
z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )  e.  _V )
13123ad2ant1 1082 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )  e.  _V )
14 eleq2 2690 . . . . . 6  |-  ( p  =  P  ->  (
z  e.  p  <->  z  e.  P ) )
15 difeq1 3721 . . . . . . 7  |-  ( p  =  P  ->  (
p  \  { z } )  =  ( P  \  { z } ) )
1615unieqd 4446 . . . . . 6  |-  ( p  =  P  ->  U. (
p  \  { z } )  =  U. ( P  \  { z } ) )
1714, 16ifbieq1d 4109 . . . . 5  |-  ( p  =  P  ->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z )  =  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )
1817mpteq2dv 4745 . . . 4  |-  ( p  =  P  ->  (
z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
19 eqid 2622 . . . 4  |-  ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) )  =  ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) )
2018, 19fvmptg 6280 . . 3  |-  ( ( P  e.  { y  e.  ~P D  | 
y  ~~  2o }  /\  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )  e.  _V )  ->  ( ( p  e. 
{ y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
2111, 13, 20syl2anc 693 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
( p  e.  {
y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. (
p  \  { z } ) ,  z ) ) ) `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
224, 21eqtrd 2656 1  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-pmtr 17862
This theorem is referenced by:  pmtrfv  17872  pmtrf  17875
  Copyright terms: Public domain W3C validator