MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubdg Structured version   Visualization version   Unicode version

Theorem poslubdg 17149
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubdg.l  |-  .<_  =  ( le `  K )
poslubdg.b  |-  ( ph  ->  B  =  ( Base `  K ) )
poslubdg.u  |-  ( ph  ->  U  =  ( lub `  K ) )
poslubdg.k  |-  ( ph  ->  K  e.  Poset )
poslubdg.s  |-  ( ph  ->  S  C_  B )
poslubdg.t  |-  ( ph  ->  T  e.  B )
poslubdg.ub  |-  ( (
ph  /\  x  e.  S )  ->  x  .<_  T )
poslubdg.le  |-  ( (
ph  /\  y  e.  B  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
Assertion
Ref Expression
poslubdg  |-  ( ph  ->  ( U `  S
)  =  T )
Distinct variable groups:    x,  .<_ , y   
x, B, y    x, K, y    x, S, y   
x, U, y    x, T, y    ph, x, y

Proof of Theorem poslubdg
StepHypRef Expression
1 poslubdg.u . . 3  |-  ( ph  ->  U  =  ( lub `  K ) )
21fveq1d 6193 . 2  |-  ( ph  ->  ( U `  S
)  =  ( ( lub `  K ) `
 S ) )
3 poslubdg.l . . 3  |-  .<_  =  ( le `  K )
4 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
5 eqid 2622 . . 3  |-  ( lub `  K )  =  ( lub `  K )
6 poslubdg.k . . 3  |-  ( ph  ->  K  e.  Poset )
7 poslubdg.s . . . 4  |-  ( ph  ->  S  C_  B )
8 poslubdg.b . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
97, 8sseqtrd 3641 . . 3  |-  ( ph  ->  S  C_  ( Base `  K ) )
10 poslubdg.t . . . 4  |-  ( ph  ->  T  e.  B )
1110, 8eleqtrd 2703 . . 3  |-  ( ph  ->  T  e.  ( Base `  K ) )
12 poslubdg.ub . . 3  |-  ( (
ph  /\  x  e.  S )  ->  x  .<_  T )
138eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  K
) ) )
1413biimpar 502 . . . . 5  |-  ( (
ph  /\  y  e.  ( Base `  K )
)  ->  y  e.  B )
15143adant3 1081 . . . 4  |-  ( (
ph  /\  y  e.  ( Base `  K )  /\  A. x  e.  S  x  .<_  y )  -> 
y  e.  B )
16 poslubdg.le . . . 4  |-  ( (
ph  /\  y  e.  B  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
1715, 16syld3an2 1373 . . 3  |-  ( (
ph  /\  y  e.  ( Base `  K )  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
183, 4, 5, 6, 9, 11, 12, 17poslubd 17148 . 2  |-  ( ph  ->  ( ( lub `  K
) `  S )  =  T )
192, 18eqtrd 2656 1  |-  ( ph  ->  ( U `  S
)  =  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940   lubclub 16942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-preset 16928  df-poset 16946  df-lub 16974
This theorem is referenced by:  posglbd  17150  mrelatlub  17186
  Copyright terms: Public domain W3C validator