MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrelatlub Structured version   Visualization version   Unicode version

Theorem mrelatlub 17186
Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
mreclat.i  |-  I  =  (toInc `  C )
mrelatlub.f  |-  F  =  (mrCls `  C )
mrelatlub.l  |-  L  =  ( lub `  I
)
Assertion
Ref Expression
mrelatlub  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  ( L `  U )  =  ( F `  U. U ) )

Proof of Theorem mrelatlub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( le
`  I )  =  ( le `  I
)
2 mreclat.i . . . 4  |-  I  =  (toInc `  C )
32ipobas 17155 . . 3  |-  ( C  e.  (Moore `  X
)  ->  C  =  ( Base `  I )
)
43adantr 481 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  C  =  ( Base `  I
) )
5 mrelatlub.l . . 3  |-  L  =  ( lub `  I
)
65a1i 11 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  L  =  ( lub `  I
) )
72ipopos 17160 . . 3  |-  I  e. 
Poset
87a1i 11 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  I  e.  Poset )
9 simpr 477 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  U  C_  C )
10 uniss 4458 . . . . 5  |-  ( U 
C_  C  ->  U. U  C_ 
U. C )
1110adantl 482 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  U. U  C_ 
U. C )
12 mreuni 16260 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  U. C  =  X )
1312adantr 481 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  U. C  =  X )
1411, 13sseqtrd 3641 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  U. U  C_  X )
15 mrelatlub.f . . . 4  |-  F  =  (mrCls `  C )
1615mrccl 16271 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  X )  -> 
( F `  U. U )  e.  C
)
1714, 16syldan 487 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  ( F `  U. U )  e.  C )
18 elssuni 4467 . . . 4  |-  ( x  e.  U  ->  x  C_ 
U. U )
1915mrcssid 16277 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  X )  ->  U. U  C_  ( F `
 U. U ) )
2014, 19syldan 487 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  U. U  C_  ( F `  U. U ) )
2118, 20sylan9ssr 3617 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  x  e.  U )  ->  x  C_  ( F `  U. U ) )
22 simpll 790 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  x  e.  U )  ->  C  e.  (Moore `  X )
)
239sselda 3603 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  x  e.  U )  ->  x  e.  C )
2417adantr 481 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  x  e.  U )  ->  ( F `  U. U )  e.  C )
252, 1ipole 17158 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  C  /\  ( F `  U. U )  e.  C )  -> 
( x ( le
`  I ) ( F `  U. U
)  <->  x  C_  ( F `
 U. U ) ) )
2622, 23, 24, 25syl3anc 1326 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  x  e.  U )  ->  (
x ( le `  I ) ( F `
 U. U )  <-> 
x  C_  ( F `  U. U ) ) )
2721, 26mpbird 247 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  x  e.  U )  ->  x
( le `  I
) ( F `  U. U ) )
28 simp1l 1085 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  C  e.  (Moore `  X ) )
29 simplll 798 . . . . . . . . 9  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C
)  /\  x  e.  U )  ->  C  e.  (Moore `  X )
)
30 simplr 792 . . . . . . . . . 10  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C )  ->  U  C_  C )
3130sselda 3603 . . . . . . . . 9  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C
)  /\  x  e.  U )  ->  x  e.  C )
32 simplr 792 . . . . . . . . 9  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C
)  /\  x  e.  U )  ->  y  e.  C )
332, 1ipole 17158 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  C  /\  y  e.  C )  ->  (
x ( le `  I ) y  <->  x  C_  y
) )
3429, 31, 32, 33syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C
)  /\  x  e.  U )  ->  (
x ( le `  I ) y  <->  x  C_  y
) )
3534biimpd 219 . . . . . . 7  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C
)  /\  x  e.  U )  ->  (
x ( le `  I ) y  ->  x  C_  y ) )
3635ralimdva 2962 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C )  ->  ( A. x  e.  U  x ( le `  I ) y  ->  A. x  e.  U  x  C_  y ) )
37363impia 1261 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  A. x  e.  U  x  C_  y
)
38 unissb 4469 . . . . 5  |-  ( U. U  C_  y  <->  A. x  e.  U  x  C_  y
)
3937, 38sylibr 224 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  U. U  C_  y )
40 simp2 1062 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  y  e.  C )
4115mrcsscl 16280 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  y  /\  y  e.  C )  ->  ( F `  U. U ) 
C_  y )
4228, 39, 40, 41syl3anc 1326 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  ( F `  U. U )  C_  y )
43173ad2ant1 1082 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  ( F `  U. U )  e.  C )
442, 1ipole 17158 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  ( F `  U. U )  e.  C  /\  y  e.  C )  ->  (
( F `  U. U ) ( le
`  I ) y  <-> 
( F `  U. U )  C_  y
) )
4528, 43, 40, 44syl3anc 1326 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  ( ( F `  U. U ) ( le `  I
) y  <->  ( F `  U. U )  C_  y ) )
4642, 45mpbird 247 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C )  /\  y  e.  C  /\  A. x  e.  U  x ( le `  I ) y )  ->  ( F `  U. U ) ( le `  I ) y )
471, 4, 6, 8, 9, 17, 27, 46poslubdg 17149 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C )  ->  ( L `  U )  =  ( F `  U. U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   U.cuni 4436   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948  Moorecmre 16242  mrClscmrc 16243   Posetcpo 16940   lubclub 16942  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-mre 16246  df-mrc 16247  df-preset 16928  df-poset 16946  df-lub 16974  df-ipo 17152
This theorem is referenced by:  mreclatBAD  17187
  Copyright terms: Public domain W3C validator