| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > poss | Structured version Visualization version Unicode version | ||
| Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| poss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 3666 |
. . 3
| |
| 2 | ssralv 3666 |
. . . . 5
| |
| 3 | ssralv 3666 |
. . . . . 6
| |
| 4 | 3 | ralimdv 2963 |
. . . . 5
|
| 5 | 2, 4 | syld 47 |
. . . 4
|
| 6 | 5 | ralimdv 2963 |
. . 3
|
| 7 | 1, 6 | syld 47 |
. 2
|
| 8 | df-po 5035 |
. 2
| |
| 9 | df-po 5035 |
. 2
| |
| 10 | 7, 8, 9 | 3imtr4g 285 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-in 3581 df-ss 3588 df-po 5035 |
| This theorem is referenced by: poeq2 5039 soss 5053 swoso 7775 frfi 8205 wemapsolem 8455 fin23lem27 9150 zorn2lem6 9323 xrge0iifiso 29981 incsequz2 33545 |
| Copyright terms: Public domain | W3C validator |