Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifiso Structured version   Visualization version   Unicode version

Theorem xrge0iifiso 29981
Description: The defined bijection from the closed unit interval and the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  0 , +oo ,  -u ( log `  x
) ) )
Assertion
Ref Expression
xrge0iifiso  |-  F  Isom  <  ,  `'  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
Distinct variable group:    x, F

Proof of Theorem xrge0iifiso
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . 3  |-  ( 0 [,] 1 )  C_  RR*
2 xrltso 11974 . . 3  |-  <  Or  RR*
3 soss 5053 . . 3  |-  ( ( 0 [,] 1 ) 
C_  RR*  ->  (  <  Or 
RR*  ->  <  Or  (
0 [,] 1 ) ) )
41, 2, 3mp2 9 . 2  |-  <  Or  ( 0 [,] 1
)
5 iccssxr 12256 . . 3  |-  ( 0 [,] +oo )  C_  RR*
6 cnvso 5674 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
72, 6mpbi 220 . . . 4  |-  `'  <  Or 
RR*
8 sopo 5052 . . . 4  |-  ( `'  <  Or  RR*  ->  `'  <  Po  RR* )
97, 8ax-mp 5 . . 3  |-  `'  <  Po 
RR*
10 poss 5037 . . 3  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  ( `'  <  Po 
RR*  ->  `'  <  Po  ( 0 [,] +oo ) ) )
115, 9, 10mp2 9 . 2  |-  `'  <  Po  ( 0 [,] +oo )
12 xrge0iifhmeo.1 . . . . 5  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  0 , +oo ,  -u ( log `  x
) ) )
1312xrge0iifcnv 29979 . . . 4  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  /\  `' F  =  ( z  e.  ( 0 [,] +oo )  |->  if ( z  = +oo ,  0 ,  ( exp `  -u z
) ) ) )
1413simpli 474 . . 3  |-  F :
( 0 [,] 1
)
-1-1-onto-> ( 0 [,] +oo )
15 f1ofo 6144 . . 3  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  ->  F : ( 0 [,] 1 )
-onto-> ( 0 [,] +oo ) )
1614, 15ax-mp 5 . 2  |-  F :
( 0 [,] 1
) -onto-> ( 0 [,] +oo )
17 0xr 10086 . . . . . . . 8  |-  0  e.  RR*
18 1re 10039 . . . . . . . . 9  |-  1  e.  RR
1918rexri 10097 . . . . . . . 8  |-  1  e.  RR*
20 0le1 10551 . . . . . . . 8  |-  0  <_  1
21 snunioc 12300 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  0  <_ 
1 )  ->  ( { 0 }  u.  ( 0 (,] 1
) )  =  ( 0 [,] 1 ) )
2217, 19, 20, 21mp3an 1424 . . . . . . 7  |-  ( { 0 }  u.  (
0 (,] 1 ) )  =  ( 0 [,] 1 )
2322eleq2i 2693 . . . . . 6  |-  ( w  e.  ( { 0 }  u.  ( 0 (,] 1 ) )  <-> 
w  e.  ( 0 [,] 1 ) )
24 elun 3753 . . . . . 6  |-  ( w  e.  ( { 0 }  u.  ( 0 (,] 1 ) )  <-> 
( w  e.  {
0 }  \/  w  e.  ( 0 (,] 1
) ) )
2523, 24bitr3i 266 . . . . 5  |-  ( w  e.  ( 0 [,] 1 )  <->  ( w  e.  { 0 }  \/  w  e.  ( 0 (,] 1 ) ) )
26 velsn 4193 . . . . . . 7  |-  ( w  e.  { 0 }  <-> 
w  =  0 )
27 elunitrn 29943 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  ->  z  e.  RR )
2827adantr 481 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  0  <  z )  -> 
z  e.  RR )
29 simpr 477 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  0  <  z )  -> 
0  <  z )
30 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
3130, 18elicc2i 12239 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 [,] 1 )  <->  ( z  e.  RR  /\  0  <_ 
z  /\  z  <_  1 ) )
3231simp3bi 1078 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  ->  z  <_  1 )
3332adantr 481 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  0  <  z )  -> 
z  <_  1 )
34 elioc2 12236 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
z  e.  ( 0 (,] 1 )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <_  1 ) ) )
3517, 18, 34mp2an 708 . . . . . . . . . . 11  |-  ( z  e.  ( 0 (,] 1 )  <->  ( z  e.  RR  /\  0  < 
z  /\  z  <_  1 ) )
3628, 29, 33, 35syl3anbrc 1246 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  0  <  z )  -> 
z  e.  ( 0 (,] 1 ) )
37 pnfxr 10092 . . . . . . . . . . . . . . 15  |- +oo  e.  RR*
38 0le0 11110 . . . . . . . . . . . . . . 15  |-  0  <_  0
39 ltpnf 11954 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR  ->  1  < +oo )
4018, 39ax-mp 5 . . . . . . . . . . . . . . 15  |-  1  < +oo
41 iocssioo 12263 . . . . . . . . . . . . . . 15  |-  ( ( ( 0  e.  RR*  /\ +oo  e.  RR* )  /\  (
0  <_  0  /\  1  < +oo ) )  -> 
( 0 (,] 1
)  C_  ( 0 (,) +oo ) )
4217, 37, 38, 40, 41mp4an 709 . . . . . . . . . . . . . 14  |-  ( 0 (,] 1 )  C_  ( 0 (,) +oo )
43 ioorp 12251 . . . . . . . . . . . . . 14  |-  ( 0 (,) +oo )  = 
RR+
4442, 43sseqtri 3637 . . . . . . . . . . . . 13  |-  ( 0 (,] 1 )  C_  RR+
4544sseli 3599 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 (,] 1 )  ->  z  e.  RR+ )
46 relogcl 24322 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR+  ->  ( log `  z )  e.  RR )
4746renegcld 10457 . . . . . . . . . . . . . 14  |-  ( z  e.  RR+  ->  -u ( log `  z )  e.  RR )
48 ltpnf 11954 . . . . . . . . . . . . . 14  |-  ( -u ( log `  z )  e.  RR  ->  -u ( log `  z )  < +oo )
4947, 48syl 17 . . . . . . . . . . . . 13  |-  ( z  e.  RR+  ->  -u ( log `  z )  < +oo )
50 brcnvg 5303 . . . . . . . . . . . . . 14  |-  ( ( +oo  e.  RR*  /\  -u ( log `  z )  e.  RR )  ->  ( +oo `'  <  -u ( log `  z
)  <->  -u ( log `  z
)  < +oo )
)
5137, 47, 50sylancr 695 . . . . . . . . . . . . 13  |-  ( z  e.  RR+  ->  ( +oo `'  <  -u ( log `  z
)  <->  -u ( log `  z
)  < +oo )
)
5249, 51mpbird 247 . . . . . . . . . . . 12  |-  ( z  e.  RR+  -> +oo `'  <  -u ( log `  z
) )
5345, 52syl 17 . . . . . . . . . . 11  |-  ( z  e.  ( 0 (,] 1 )  -> +oo `'  <  -u ( log `  z
) )
5412xrge0iifcv 29980 . . . . . . . . . . 11  |-  ( z  e.  ( 0 (,] 1 )  ->  ( F `  z )  =  -u ( log `  z
) )
5553, 54breqtrrd 4681 . . . . . . . . . 10  |-  ( z  e.  ( 0 (,] 1 )  -> +oo `'  <  ( F `  z
) )
5636, 55syl 17 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,] 1 )  /\  0  <  z )  -> +oo `'  <  ( F `  z ) )
5756ex 450 . . . . . . . 8  |-  ( z  e.  ( 0 [,] 1 )  ->  (
0  <  z  -> +oo `'  <  ( F `  z ) ) )
58 breq1 4656 . . . . . . . . 9  |-  ( w  =  0  ->  (
w  <  z  <->  0  <  z ) )
59 fveq2 6191 . . . . . . . . . . 11  |-  ( w  =  0  ->  ( F `  w )  =  ( F ` 
0 ) )
60 0elunit 12290 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] 1
)
61 iftrue 4092 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  if ( x  =  0 , +oo ,  -u ( log `  x ) )  = +oo )
62 pnfex 10093 . . . . . . . . . . . . 13  |- +oo  e.  _V
6361, 12, 62fvmpt 6282 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( F `  0 )  = +oo )
6460, 63ax-mp 5 . . . . . . . . . . 11  |-  ( F `
 0 )  = +oo
6559, 64syl6eq 2672 . . . . . . . . . 10  |-  ( w  =  0  ->  ( F `  w )  = +oo )
6665breq1d 4663 . . . . . . . . 9  |-  ( w  =  0  ->  (
( F `  w
) `'  <  ( F `  z )  <-> +oo `'  <  ( F `  z ) ) )
6758, 66imbi12d 334 . . . . . . . 8  |-  ( w  =  0  ->  (
( w  <  z  ->  ( F `  w
) `'  <  ( F `  z )
)  <->  ( 0  < 
z  -> +oo `'  <  ( F `  z ) ) ) )
6857, 67syl5ibr 236 . . . . . . 7  |-  ( w  =  0  ->  (
z  e.  ( 0 [,] 1 )  -> 
( w  <  z  ->  ( F `  w
) `'  <  ( F `  z )
) ) )
6926, 68sylbi 207 . . . . . 6  |-  ( w  e.  { 0 }  ->  ( z  e.  ( 0 [,] 1
)  ->  ( w  <  z  ->  ( F `  w ) `'  <  ( F `  z ) ) ) )
70 simpll 790 . . . . . . . . 9  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  w  e.  ( 0 (,] 1
) )
7127ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  z  e.  RR )
7230a1i 11 . . . . . . . . . . 11  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  0  e.  RR )
7344sseli 3599 . . . . . . . . . . . . 13  |-  ( w  e.  ( 0 (,] 1 )  ->  w  e.  RR+ )
7473rpred 11872 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 (,] 1 )  ->  w  e.  RR )
7574ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  w  e.  RR )
76 elioc2 12236 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
w  e.  ( 0 (,] 1 )  <->  ( w  e.  RR  /\  0  < 
w  /\  w  <_  1 ) ) )
7717, 18, 76mp2an 708 . . . . . . . . . . . . 13  |-  ( w  e.  ( 0 (,] 1 )  <->  ( w  e.  RR  /\  0  < 
w  /\  w  <_  1 ) )
7877simp2bi 1077 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 (,] 1 )  ->  0  <  w )
7978ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  0  <  w )
80 simpr 477 . . . . . . . . . . 11  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  w  <  z )
8172, 75, 71, 79, 80lttrd 10198 . . . . . . . . . 10  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  0  <  z )
8232ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  z  <_  1 )
8371, 81, 82, 35syl3anbrc 1246 . . . . . . . . 9  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  z  e.  ( 0 (,] 1
) )
8470, 83jca 554 . . . . . . . 8  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  (
w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) ) )
8573adantr 481 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  w  e.  RR+ )
8685relogcld 24369 . . . . . . . . . . . 12  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( log `  w
)  e.  RR )
8745adantl 482 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  z  e.  RR+ )
8887relogcld 24369 . . . . . . . . . . . 12  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( log `  z
)  e.  RR )
8986, 88ltnegd 10605 . . . . . . . . . . 11  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( ( log `  w )  <  ( log `  z )  <->  -u ( log `  z )  <  -u ( log `  w ) ) )
90 logltb 24346 . . . . . . . . . . . 12  |-  ( ( w  e.  RR+  /\  z  e.  RR+ )  ->  (
w  <  z  <->  ( log `  w )  <  ( log `  z ) ) )
9173, 45, 90syl2an 494 . . . . . . . . . . 11  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( w  < 
z  <->  ( log `  w
)  <  ( log `  z ) ) )
92 negex 10279 . . . . . . . . . . . . 13  |-  -u ( log `  w )  e. 
_V
93 negex 10279 . . . . . . . . . . . . 13  |-  -u ( log `  z )  e. 
_V
9492, 93brcnv 5305 . . . . . . . . . . . 12  |-  ( -u ( log `  w ) `'  <  -u ( log `  z
)  <->  -u ( log `  z
)  <  -u ( log `  w ) )
9594a1i 11 . . . . . . . . . . 11  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( -u ( log `  w ) `'  <  -u ( log `  z
)  <->  -u ( log `  z
)  <  -u ( log `  w ) ) )
9689, 91, 953bitr4d 300 . . . . . . . . . 10  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( w  < 
z  <->  -u ( log `  w
) `'  <  -u ( log `  z ) ) )
9796biimpd 219 . . . . . . . . 9  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( w  < 
z  ->  -u ( log `  w ) `'  <  -u ( log `  z
) ) )
9812xrge0iifcv 29980 . . . . . . . . . 10  |-  ( w  e.  ( 0 (,] 1 )  ->  ( F `  w )  =  -u ( log `  w
) )
9998, 54breqan12d 4669 . . . . . . . . 9  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 w ) `'  <  ( F `  z )  <->  -u ( log `  w ) `'  <  -u ( log `  z
) ) )
10097, 99sylibrd 249 . . . . . . . 8  |-  ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 (,] 1 ) )  ->  ( w  < 
z  ->  ( F `  w ) `'  <  ( F `  z ) ) )
10184, 80, 100sylc 65 . . . . . . 7  |-  ( ( ( w  e.  ( 0 (,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  /\  w  < 
z )  ->  ( F `  w ) `'  <  ( F `  z ) )
102101exp31 630 . . . . . 6  |-  ( w  e.  ( 0 (,] 1 )  ->  (
z  e.  ( 0 [,] 1 )  -> 
( w  <  z  ->  ( F `  w
) `'  <  ( F `  z )
) ) )
10369, 102jaoi 394 . . . . 5  |-  ( ( w  e.  { 0 }  \/  w  e.  ( 0 (,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  -> 
( w  <  z  ->  ( F `  w
) `'  <  ( F `  z )
) ) )
10425, 103sylbi 207 . . . 4  |-  ( w  e.  ( 0 [,] 1 )  ->  (
z  e.  ( 0 [,] 1 )  -> 
( w  <  z  ->  ( F `  w
) `'  <  ( F `  z )
) ) )
105104imp 445 . . 3  |-  ( ( w  e.  ( 0 [,] 1 )  /\  z  e.  ( 0 [,] 1 ) )  ->  ( w  < 
z  ->  ( F `  w ) `'  <  ( F `  z ) ) )
106105rgen2a 2977 . 2  |-  A. w  e.  ( 0 [,] 1
) A. z  e.  ( 0 [,] 1
) ( w  < 
z  ->  ( F `  w ) `'  <  ( F `  z ) )
107 soisoi 6578 . 2  |-  ( ( (  <  Or  (
0 [,] 1 )  /\  `'  <  Po  ( 0 [,] +oo ) )  /\  ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo )  /\  A. w  e.  ( 0 [,] 1 ) A. z  e.  ( 0 [,] 1 ) ( w  <  z  -> 
( F `  w
) `'  <  ( F `  z )
) ) )  ->  F  Isom  <  ,  `'  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo )
) )
1084, 11, 16, 106, 107mp4an 709 1  |-  F  Isom  <  ,  `'  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    Po wpo 5033    Or wor 5034   `'ccnv 5113   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267   RR+crp 11832   (,)cioo 12175   (,]cioc 12176   [,]cicc 12178   expce 14792   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  xrge0iifhmeo  29982
  Copyright terms: Public domain W3C validator