MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem27 Structured version   Visualization version   Unicode version

Theorem fin23lem27 9150
Description: The mapping constructed in fin23lem22 9149 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b  |-  C  =  ( i  e.  om  |->  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  i )
)
Assertion
Ref Expression
fin23lem27  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C  Isom  _E  ,  _E  ( om ,  S ) )
Distinct variable group:    i, j, S
Allowed substitution hints:    C( i, j)

Proof of Theorem fin23lem27
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7074 . . . 4  |-  Ord  om
2 ordwe 5736 . . . 4  |-  ( Ord 
om  ->  _E  We  om )
3 weso 5105 . . . 4  |-  (  _E  We  om  ->  _E  Or  om )
41, 2, 3mp2b 10 . . 3  |-  _E  Or  om
54a1i 11 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  _E  Or  om )
6 sopo 5052 . . . . 5  |-  (  _E  Or  om  ->  _E  Po  om )
74, 6ax-mp 5 . . . 4  |-  _E  Po  om
8 poss 5037 . . . 4  |-  ( S 
C_  om  ->  (  _E  Po  om  ->  _E  Po  S ) )
97, 8mpi 20 . . 3  |-  ( S 
C_  om  ->  _E  Po  S )
109adantr 481 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  _E  Po  S )
11 fin23lem22.b . . . 4  |-  C  =  ( i  e.  om  |->  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  i )
)
1211fin23lem22 9149 . . 3  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C : om -1-1-onto-> S )
13 f1ofo 6144 . . 3  |-  ( C : om -1-1-onto-> S  ->  C : om -onto-> S )
1412, 13syl 17 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C : om -onto-> S
)
15 nnsdomel 8816 . . . . . . . 8  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( a  e.  b  <-> 
a  ~<  b ) )
1615adantl 482 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  <->  a  ~<  b ) )
1716biimpd 219 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  -> 
a  ~<  b ) )
18 fin23lem23 9148 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  a  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  a
)
1918adantrr 753 . . . . . . . . . . . 12  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! j  e.  S  (
j  i^i  S )  ~~  a )
20 ineq1 3807 . . . . . . . . . . . . . 14  |-  ( j  =  i  ->  (
j  i^i  S )  =  ( i  i^i 
S ) )
2120breq1d 4663 . . . . . . . . . . . . 13  |-  ( j  =  i  ->  (
( j  i^i  S
)  ~~  a  <->  ( i  i^i  S )  ~~  a
) )
2221cbvreuv 3173 . . . . . . . . . . . 12  |-  ( E! j  e.  S  ( j  i^i  S ) 
~~  a  <->  E! i  e.  S  ( i  i^i  S )  ~~  a
)
2319, 22sylib 208 . . . . . . . . . . 11  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! i  e.  S  (
i  i^i  S )  ~~  a )
24 nfv 1843 . . . . . . . . . . . 12  |-  F/ i ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~~  a
2521cbvriotav 6622 . . . . . . . . . . . 12  |-  ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  =  (
iota_ i  e.  S  ( i  i^i  S
)  ~~  a )
26 ineq1 3807 . . . . . . . . . . . . 13  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  ->  ( i  i^i  S )  =  ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S ) )
2726breq1d 4663 . . . . . . . . . . . 12  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  ->  ( (
i  i^i  S )  ~~  a  <->  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  i^i  S
)  ~~  a )
)
2824, 25, 27riotaprop 6635 . . . . . . . . . . 11  |-  ( E! i  e.  S  ( i  i^i  S ) 
~~  a  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~~  a
) )
2923, 28syl 17 . . . . . . . . . 10  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~~  a
) )
3029simprd 479 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~~  a
)
3130adantrr 753 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~~  a )
32 simprr 796 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
a  ~<  b )
33 fin23lem23 9148 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  b  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  b
)
3433adantrl 752 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! j  e.  S  (
j  i^i  S )  ~~  b )
3520breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( j  =  i  ->  (
( j  i^i  S
)  ~~  b  <->  ( i  i^i  S )  ~~  b
) )
3635cbvreuv 3173 . . . . . . . . . . . . . 14  |-  ( E! j  e.  S  ( j  i^i  S ) 
~~  b  <->  E! i  e.  S  ( i  i^i  S )  ~~  b
)
3734, 36sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! i  e.  S  (
i  i^i  S )  ~~  b )
38 nfv 1843 . . . . . . . . . . . . . 14  |-  F/ i ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )  ~~  b
3935cbvriotav 6622 . . . . . . . . . . . . . 14  |-  ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  =  (
iota_ i  e.  S  ( i  i^i  S
)  ~~  b )
40 ineq1 3807 . . . . . . . . . . . . . . 15  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  ->  ( i  i^i  S )  =  ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S ) )
4140breq1d 4663 . . . . . . . . . . . . . 14  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  ->  ( (
i  i^i  S )  ~~  b  <->  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  i^i  S
)  ~~  b )
)
4238, 39, 41riotaprop 6635 . . . . . . . . . . . . 13  |-  ( E! i  e.  S  ( i  i^i  S ) 
~~  b  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ~~  b
) )
4337, 42syl 17 . . . . . . . . . . . 12  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ~~  b
) )
4443simprd 479 . . . . . . . . . . 11  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ~~  b
)
4544ensymd 8007 . . . . . . . . . 10  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  b  ~~  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)
4645adantrr 753 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
b  ~~  ( ( iota_ j  e.  S  ( j  i^i  S ) 
~~  b )  i^i 
S ) )
47 sdomentr 8094 . . . . . . . . 9  |-  ( ( a  ~<  b  /\  b  ~~  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  i^i  S
) )  ->  a  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)
4832, 46, 47syl2anc 693 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
a  ~<  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  i^i  S
) )
49 ensdomtr 8096 . . . . . . . 8  |-  ( ( ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~~  a  /\  a  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)  ->  ( ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  i^i 
S )  ~<  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S ) )
5031, 48, 49syl2anc 693 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)
5150expr 643 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  ~<  b  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~<  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S ) ) )
52 simpll 790 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  S  C_ 
om )
53 omsson 7069 . . . . . . . . 9  |-  om  C_  On
5452, 53syl6ss 3615 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  S  C_  On )
5529simpld 475 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  e.  S )
5654, 55sseldd 3604 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  e.  On )
5743simpld 475 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  b )  e.  S )
5854, 57sseldd 3604 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  b )  e.  On )
59 onsdominel 8109 . . . . . . . 8  |-  ( ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  On  /\  ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  e.  On  /\  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)  ->  ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  e.  (
iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
)
60593expia 1267 . . . . . . 7  |-  ( ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  On  /\  ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  e.  On )  ->  ( ( (
iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~<  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  e.  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
6156, 58, 60syl2anc 693 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )  ->  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
6217, 51, 613syld 60 . . . . 5  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  -> 
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
63 simprl 794 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  a  e.  om )
64 breq2 4657 . . . . . . . . 9  |-  ( i  =  a  ->  (
( j  i^i  S
)  ~~  i  <->  ( j  i^i  S )  ~~  a
) )
6564riotabidv 6613 . . . . . . . 8  |-  ( i  =  a  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  i )  =  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )
)
6665, 11fvmptg 6280 . . . . . . 7  |-  ( ( a  e.  om  /\  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  S )  ->  ( C `  a )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
) )
6763, 55, 66syl2anc 693 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( C `  a )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
) )
68 simprr 796 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  b  e.  om )
69 breq2 4657 . . . . . . . . 9  |-  ( i  =  b  ->  (
( j  i^i  S
)  ~~  i  <->  ( j  i^i  S )  ~~  b
) )
7069riotabidv 6613 . . . . . . . 8  |-  ( i  =  b  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  i )  =  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
)
7170, 11fvmptg 6280 . . . . . . 7  |-  ( ( b  e.  om  /\  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  e.  S )  ->  ( C `  b )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
) )
7268, 57, 71syl2anc 693 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( C `  b )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
) )
7367, 72eleq12d 2695 . . . . 5  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( C `  a
)  e.  ( C `
 b )  <->  ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  e.  (
iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
7462, 73sylibrd 249 . . . 4  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  -> 
( C `  a
)  e.  ( C `
 b ) ) )
75 epel 5032 . . . 4  |-  ( a  _E  b  <->  a  e.  b )
76 fvex 6201 . . . . 5  |-  ( C `
 b )  e. 
_V
7776epelc 5031 . . . 4  |-  ( ( C `  a )  _E  ( C `  b )  <->  ( C `  a )  e.  ( C `  b ) )
7874, 75, 773imtr4g 285 . . 3  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  _E  b  -> 
( C `  a
)  _E  ( C `
 b ) ) )
7978ralrimivva 2971 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  A. a  e.  om  A. b  e.  om  (
a  _E  b  -> 
( C `  a
)  _E  ( C `
 b ) ) )
80 soisoi 6578 . 2  |-  ( ( (  _E  Or  om  /\  _E  Po  S )  /\  ( C : om -onto-> S  /\  A. a  e.  om  A. b  e. 
om  ( a  _E  b  ->  ( C `  a )  _E  ( C `  b )
) ) )  ->  C  Isom  _E  ,  _E  ( om ,  S ) )
815, 10, 14, 79, 80syl22anc 1327 1  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C  Isom  _E  ,  _E  ( om ,  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    Po wpo 5033    Or wor 5034    We wwe 5072   Ord word 5722   Oncon0 5723   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   iota_crio 6610   omcom 7065    ~~ cen 7952    ~< csdm 7954   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator