| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pptbas | Structured version Visualization version Unicode version | ||
| Description: The particular point
topology is generated by a basis consisting of
pairs |
| Ref | Expression |
|---|---|
| pptbas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppttop 20811 |
. . . 4
| |
| 2 | topontop 20718 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | simpr 477 |
. . . . . . . 8
| |
| 5 | simplr 792 |
. . . . . . . 8
| |
| 6 | prssi 4353 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . . . 7
|
| 8 | prex 4909 |
. . . . . . . 8
| |
| 9 | 8 | elpw 4164 |
. . . . . . 7
|
| 10 | 7, 9 | sylibr 224 |
. . . . . 6
|
| 11 | prid2g 4296 |
. . . . . . . 8
| |
| 12 | 11 | ad2antlr 763 |
. . . . . . 7
|
| 13 | 12 | orcd 407 |
. . . . . 6
|
| 14 | eleq2 2690 |
. . . . . . . 8
| |
| 15 | eqeq1 2626 |
. . . . . . . 8
| |
| 16 | 14, 15 | orbi12d 746 |
. . . . . . 7
|
| 17 | 16 | elrab 3363 |
. . . . . 6
|
| 18 | 10, 13, 17 | sylanbrc 698 |
. . . . 5
|
| 19 | eqid 2622 |
. . . . 5
| |
| 20 | 18, 19 | fmptd 6385 |
. . . 4
|
| 21 | frn 6053 |
. . . 4
| |
| 22 | 20, 21 | syl 17 |
. . 3
|
| 23 | eleq2 2690 |
. . . . . . 7
| |
| 24 | eqeq1 2626 |
. . . . . . 7
| |
| 25 | 23, 24 | orbi12d 746 |
. . . . . 6
|
| 26 | 25 | elrab 3363 |
. . . . 5
|
| 27 | elpwi 4168 |
. . . . . . . . . . 11
| |
| 28 | 27 | ad2antrl 764 |
. . . . . . . . . 10
|
| 29 | 28 | sselda 3603 |
. . . . . . . . 9
|
| 30 | prid1g 4295 |
. . . . . . . . . 10
| |
| 31 | 30 | adantl 482 |
. . . . . . . . 9
|
| 32 | simpr 477 |
. . . . . . . . . 10
| |
| 33 | n0i 3920 |
. . . . . . . . . . . 12
| |
| 34 | 33 | adantl 482 |
. . . . . . . . . . 11
|
| 35 | simplrr 801 |
. . . . . . . . . . . 12
| |
| 36 | 35 | ord 392 |
. . . . . . . . . . 11
|
| 37 | 34, 36 | mt3d 140 |
. . . . . . . . . 10
|
| 38 | prssi 4353 |
. . . . . . . . . 10
| |
| 39 | 32, 37, 38 | syl2anc 693 |
. . . . . . . . 9
|
| 40 | preq1 4268 |
. . . . . . . . . . . 12
| |
| 41 | 40 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 42 | 40 | sseq1d 3632 |
. . . . . . . . . . 11
|
| 43 | 41, 42 | anbi12d 747 |
. . . . . . . . . 10
|
| 44 | 43 | rspcev 3309 |
. . . . . . . . 9
|
| 45 | 29, 31, 39, 44 | syl12anc 1324 |
. . . . . . . 8
|
| 46 | 8 | rgenw 2924 |
. . . . . . . . 9
|
| 47 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 48 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | anbi12d 747 |
. . . . . . . . . 10
|
| 50 | 19, 49 | rexrnmpt 6369 |
. . . . . . . . 9
|
| 51 | 46, 50 | ax-mp 5 |
. . . . . . . 8
|
| 52 | 45, 51 | sylibr 224 |
. . . . . . 7
|
| 53 | 52 | ralrimiva 2966 |
. . . . . 6
|
| 54 | 53 | ex 450 |
. . . . 5
|
| 55 | 26, 54 | syl5bi 232 |
. . . 4
|
| 56 | 55 | ralrimiv 2965 |
. . 3
|
| 57 | basgen2 20793 |
. . 3
| |
| 58 | 3, 22, 56, 57 | syl3anc 1326 |
. 2
|
| 59 | eleq2 2690 |
. . . 4
| |
| 60 | eqeq1 2626 |
. . . 4
| |
| 61 | 59, 60 | orbi12d 746 |
. . 3
|
| 62 | 61 | cbvrabv 3199 |
. 2
|
| 63 | 58, 62 | syl6req 2673 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-topgen 16104 df-top 20699 df-topon 20716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |