MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pptbas Structured version   Visualization version   Unicode version

Theorem pptbas 20812
Description: The particular point topology is generated by a basis consisting of pairs  { x ,  P } for each  x  e.  A. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pptbas  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e.  ~P A  |  ( P  e.  x  \/  x  =  (/) ) }  =  ( topGen `  ran  ( x  e.  A  |->  { x ,  P } ) ) )
Distinct variable groups:    x, A    x, P    x, V

Proof of Theorem pptbas
Dummy variables  w  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ppttop 20811 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  e.  (TopOn `  A ) )
2 topontop 20718 . . . 4  |-  ( { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  e.  (TopOn `  A )  ->  { y  e.  ~P A  | 
( P  e.  y  \/  y  =  (/) ) }  e.  Top )
31, 2syl 17 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  e.  Top )
4 simpr 477 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  x  e.  A )
5 simplr 792 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  P  e.  A )
6 prssi 4353 . . . . . . . 8  |-  ( ( x  e.  A  /\  P  e.  A )  ->  { x ,  P }  C_  A )
74, 5, 6syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  { x ,  P }  C_  A
)
8 prex 4909 . . . . . . . 8  |-  { x ,  P }  e.  _V
98elpw 4164 . . . . . . 7  |-  ( { x ,  P }  e.  ~P A  <->  { x ,  P }  C_  A
)
107, 9sylibr 224 . . . . . 6  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  { x ,  P }  e.  ~P A )
11 prid2g 4296 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  { x ,  P } )
1211ad2antlr 763 . . . . . . 7  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  P  e.  { x ,  P } )
1312orcd 407 . . . . . 6  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  ( P  e.  { x ,  P }  \/  {
x ,  P }  =  (/) ) )
14 eleq2 2690 . . . . . . . 8  |-  ( y  =  { x ,  P }  ->  ( P  e.  y  <->  P  e.  { x ,  P }
) )
15 eqeq1 2626 . . . . . . . 8  |-  ( y  =  { x ,  P }  ->  (
y  =  (/)  <->  { x ,  P }  =  (/) ) )
1614, 15orbi12d 746 . . . . . . 7  |-  ( y  =  { x ,  P }  ->  (
( P  e.  y  \/  y  =  (/) ) 
<->  ( P  e.  {
x ,  P }  \/  { x ,  P }  =  (/) ) ) )
1716elrab 3363 . . . . . 6  |-  ( { x ,  P }  e.  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  <->  ( {
x ,  P }  e.  ~P A  /\  ( P  e.  { x ,  P }  \/  {
x ,  P }  =  (/) ) ) )
1810, 13, 17sylanbrc 698 . . . . 5  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  x  e.  A )  ->  { x ,  P }  e.  {
y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) } )
19 eqid 2622 . . . . 5  |-  ( x  e.  A  |->  { x ,  P } )  =  ( x  e.  A  |->  { x ,  P } )
2018, 19fmptd 6385 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( x  e.  A  |->  { x ,  P } ) : A --> { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) } )
21 frn 6053 . . . 4  |-  ( ( x  e.  A  |->  { x ,  P }
) : A --> { y  e.  ~P A  | 
( P  e.  y  \/  y  =  (/) ) }  ->  ran  (
x  e.  A  |->  { x ,  P }
)  C_  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) } )
2220, 21syl 17 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ran  ( x  e.  A  |->  { x ,  P } )  C_  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) } )
23 eleq2 2690 . . . . . . 7  |-  ( y  =  z  ->  ( P  e.  y  <->  P  e.  z ) )
24 eqeq1 2626 . . . . . . 7  |-  ( y  =  z  ->  (
y  =  (/)  <->  z  =  (/) ) )
2523, 24orbi12d 746 . . . . . 6  |-  ( y  =  z  ->  (
( P  e.  y  \/  y  =  (/) ) 
<->  ( P  e.  z  \/  z  =  (/) ) ) )
2625elrab 3363 . . . . 5  |-  ( z  e.  { y  e. 
~P A  |  ( P  e.  y  \/  y  =  (/) ) }  <-> 
( z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )
27 elpwi 4168 . . . . . . . . . . 11  |-  ( z  e.  ~P A  -> 
z  C_  A )
2827ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  ->  z  C_  A )
2928sselda 3603 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  w  e.  A )
30 prid1g 4295 . . . . . . . . . 10  |-  ( w  e.  z  ->  w  e.  { w ,  P } )
3130adantl 482 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  w  e.  { w ,  P } )
32 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  w  e.  z )
33 n0i 3920 . . . . . . . . . . . 12  |-  ( w  e.  z  ->  -.  z  =  (/) )
3433adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  -.  z  =  (/) )
35 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  ( P  e.  z  \/  z  =  (/) ) )
3635ord 392 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  ( -.  P  e.  z  ->  z  =  (/) ) )
3734, 36mt3d 140 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  P  e.  z )
38 prssi 4353 . . . . . . . . . 10  |-  ( ( w  e.  z  /\  P  e.  z )  ->  { w ,  P }  C_  z )
3932, 37, 38syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  { w ,  P }  C_  z )
40 preq1 4268 . . . . . . . . . . . 12  |-  ( x  =  w  ->  { x ,  P }  =  {
w ,  P }
)
4140eleq2d 2687 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
w  e.  { x ,  P }  <->  w  e.  { w ,  P }
) )
4240sseq1d 3632 . . . . . . . . . . 11  |-  ( x  =  w  ->  ( { x ,  P }  C_  z  <->  { w ,  P }  C_  z
) )
4341, 42anbi12d 747 . . . . . . . . . 10  |-  ( x  =  w  ->  (
( w  e.  {
x ,  P }  /\  { x ,  P }  C_  z )  <->  ( w  e.  { w ,  P }  /\  { w ,  P }  C_  z
) ) )
4443rspcev 3309 . . . . . . . . 9  |-  ( ( w  e.  A  /\  ( w  e.  { w ,  P }  /\  {
w ,  P }  C_  z ) )  ->  E. x  e.  A  ( w  e.  { x ,  P }  /\  {
x ,  P }  C_  z ) )
4529, 31, 39, 44syl12anc 1324 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  E. x  e.  A  ( w  e.  { x ,  P }  /\  {
x ,  P }  C_  z ) )
468rgenw 2924 . . . . . . . . 9  |-  A. x  e.  A  { x ,  P }  e.  _V
47 eleq2 2690 . . . . . . . . . . 11  |-  ( v  =  { x ,  P }  ->  (
w  e.  v  <->  w  e.  { x ,  P }
) )
48 sseq1 3626 . . . . . . . . . . 11  |-  ( v  =  { x ,  P }  ->  (
v  C_  z  <->  { x ,  P }  C_  z
) )
4947, 48anbi12d 747 . . . . . . . . . 10  |-  ( v  =  { x ,  P }  ->  (
( w  e.  v  /\  v  C_  z
)  <->  ( w  e. 
{ x ,  P }  /\  { x ,  P }  C_  z
) ) )
5019, 49rexrnmpt 6369 . . . . . . . . 9  |-  ( A. x  e.  A  {
x ,  P }  e.  _V  ->  ( E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z )  <->  E. x  e.  A  ( w  e.  { x ,  P }  /\  { x ,  P }  C_  z
) ) )
5146, 50ax-mp 5 . . . . . . . 8  |-  ( E. v  e.  ran  (
x  e.  A  |->  { x ,  P }
) ( w  e.  v  /\  v  C_  z )  <->  E. x  e.  A  ( w  e.  { x ,  P }  /\  { x ,  P }  C_  z
) )
5245, 51sylibr 224 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  P  e.  A )  /\  (
z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  /\  w  e.  z )  ->  E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z ) )
5352ralrimiva 2966 . . . . . 6  |-  ( ( ( A  e.  V  /\  P  e.  A
)  /\  ( z  e.  ~P A  /\  ( P  e.  z  \/  z  =  (/) ) ) )  ->  A. w  e.  z  E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z ) )
5453ex 450 . . . . 5  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( ( z  e. 
~P A  /\  ( P  e.  z  \/  z  =  (/) ) )  ->  A. w  e.  z  E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z ) ) )
5526, 54syl5bi 232 . . . 4  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( z  e.  {
y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  ->  A. w  e.  z  E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z ) ) )
5655ralrimiv 2965 . . 3  |-  ( ( A  e.  V  /\  P  e.  A )  ->  A. z  e.  {
y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) } A. w  e.  z  E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z ) )
57 basgen2 20793 . . 3  |-  ( ( { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  e.  Top  /\  ran  ( x  e.  A  |->  { x ,  P } )  C_  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) }  /\  A. z  e.  { y  e.  ~P A  |  ( P  e.  y  \/  y  =  (/) ) } A. w  e.  z  E. v  e.  ran  ( x  e.  A  |->  { x ,  P } ) ( w  e.  v  /\  v  C_  z ) )  -> 
( topGen `  ran  ( x  e.  A  |->  { x ,  P } ) )  =  { y  e. 
~P A  |  ( P  e.  y  \/  y  =  (/) ) } )
583, 22, 56, 57syl3anc 1326 . 2  |-  ( ( A  e.  V  /\  P  e.  A )  ->  ( topGen `  ran  ( x  e.  A  |->  { x ,  P } ) )  =  { y  e. 
~P A  |  ( P  e.  y  \/  y  =  (/) ) } )
59 eleq2 2690 . . . 4  |-  ( y  =  x  ->  ( P  e.  y  <->  P  e.  x ) )
60 eqeq1 2626 . . . 4  |-  ( y  =  x  ->  (
y  =  (/)  <->  x  =  (/) ) )
6159, 60orbi12d 746 . . 3  |-  ( y  =  x  ->  (
( P  e.  y  \/  y  =  (/) ) 
<->  ( P  e.  x  \/  x  =  (/) ) ) )
6261cbvrabv 3199 . 2  |-  { y  e.  ~P A  | 
( P  e.  y  \/  y  =  (/) ) }  =  {
x  e.  ~P A  |  ( P  e.  x  \/  x  =  (/) ) }
6358, 62syl6req 2673 1  |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e.  ~P A  |  ( P  e.  x  \/  x  =  (/) ) }  =  ( topGen `  ran  ( x  e.  A  |->  { x ,  P } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {cpr 4179    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888   topGenctg 16098   Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-topgen 16104  df-top 20699  df-topon 20716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator