Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsprel Structured version   Visualization version   Unicode version

Theorem prsprel 41737
Description: The elements of a pair from the set of all unordered pairs over a given set  V are elements of the set  V. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
prsprel  |-  ( ( { X ,  Y }  e.  (Pairs `  V
)  /\  ( X  e.  U  /\  Y  e.  W ) )  -> 
( X  e.  V  /\  Y  e.  V
) )

Proof of Theorem prsprel
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprel 41734 . . 3  |-  ( { X ,  Y }  e.  (Pairs `  V )  ->  E. a  e.  V  E. b  e.  V  { X ,  Y }  =  { a ,  b } )
2 preq12bg 4386 . . . . . . 7  |-  ( ( ( X  e.  U  /\  Y  e.  W
)  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( { X ,  Y }  =  {
a ,  b }  <-> 
( ( X  =  a  /\  Y  =  b )  \/  ( X  =  b  /\  Y  =  a )
) ) )
3 eleq1 2689 . . . . . . . . . . . . 13  |-  ( a  =  X  ->  (
a  e.  V  <->  X  e.  V ) )
43eqcoms 2630 . . . . . . . . . . . 12  |-  ( X  =  a  ->  (
a  e.  V  <->  X  e.  V ) )
5 eleq1 2689 . . . . . . . . . . . . 13  |-  ( b  =  Y  ->  (
b  e.  V  <->  Y  e.  V ) )
65eqcoms 2630 . . . . . . . . . . . 12  |-  ( Y  =  b  ->  (
b  e.  V  <->  Y  e.  V ) )
74, 6bi2anan9 917 . . . . . . . . . . 11  |-  ( ( X  =  a  /\  Y  =  b )  ->  ( ( a  e.  V  /\  b  e.  V )  <->  ( X  e.  V  /\  Y  e.  V ) ) )
87biimpd 219 . . . . . . . . . 10  |-  ( ( X  =  a  /\  Y  =  b )  ->  ( ( a  e.  V  /\  b  e.  V )  ->  ( X  e.  V  /\  Y  e.  V )
) )
9 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( b  =  X  ->  (
b  e.  V  <->  X  e.  V ) )
109eqcoms 2630 . . . . . . . . . . . . 13  |-  ( X  =  b  ->  (
b  e.  V  <->  X  e.  V ) )
11 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( a  =  Y  ->  (
a  e.  V  <->  Y  e.  V ) )
1211eqcoms 2630 . . . . . . . . . . . . 13  |-  ( Y  =  a  ->  (
a  e.  V  <->  Y  e.  V ) )
1310, 12bi2anan9 917 . . . . . . . . . . . 12  |-  ( ( X  =  b  /\  Y  =  a )  ->  ( ( b  e.  V  /\  a  e.  V )  <->  ( X  e.  V  /\  Y  e.  V ) ) )
1413biimpd 219 . . . . . . . . . . 11  |-  ( ( X  =  b  /\  Y  =  a )  ->  ( ( b  e.  V  /\  a  e.  V )  ->  ( X  e.  V  /\  Y  e.  V )
) )
1514ancomsd 470 . . . . . . . . . 10  |-  ( ( X  =  b  /\  Y  =  a )  ->  ( ( a  e.  V  /\  b  e.  V )  ->  ( X  e.  V  /\  Y  e.  V )
) )
168, 15jaoi 394 . . . . . . . . 9  |-  ( ( ( X  =  a  /\  Y  =  b )  \/  ( X  =  b  /\  Y  =  a ) )  ->  ( ( a  e.  V  /\  b  e.  V )  ->  ( X  e.  V  /\  Y  e.  V )
) )
1716com12 32 . . . . . . . 8  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( ( ( X  =  a  /\  Y  =  b )  \/  ( X  =  b  /\  Y  =  a ) )  ->  ( X  e.  V  /\  Y  e.  V )
) )
1817adantl 482 . . . . . . 7  |-  ( ( ( X  e.  U  /\  Y  e.  W
)  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( X  =  a  /\  Y  =  b )  \/  ( X  =  b  /\  Y  =  a ) )  ->  ( X  e.  V  /\  Y  e.  V )
) )
192, 18sylbid 230 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  W
)  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( { X ,  Y }  =  {
a ,  b }  ->  ( X  e.  V  /\  Y  e.  V ) ) )
2019expcom 451 . . . . 5  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( ( X  e.  U  /\  Y  e.  W )  ->  ( { X ,  Y }  =  { a ,  b }  ->  ( X  e.  V  /\  Y  e.  V ) ) ) )
2120com23 86 . . . 4  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( { X ,  Y }  =  {
a ,  b }  ->  ( ( X  e.  U  /\  Y  e.  W )  ->  ( X  e.  V  /\  Y  e.  V )
) ) )
2221rexlimivv 3036 . . 3  |-  ( E. a  e.  V  E. b  e.  V  { X ,  Y }  =  { a ,  b }  ->  ( ( X  e.  U  /\  Y  e.  W )  ->  ( X  e.  V  /\  Y  e.  V
) ) )
231, 22syl 17 . 2  |-  ( { X ,  Y }  e.  (Pairs `  V )  ->  ( ( X  e.  U  /\  Y  e.  W )  ->  ( X  e.  V  /\  Y  e.  V )
) )
2423imp 445 1  |-  ( ( { X ,  Y }  e.  (Pairs `  V
)  /\  ( X  e.  U  /\  Y  e.  W ) )  -> 
( X  e.  V  /\  Y  e.  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {cpr 4179   ` cfv 5888  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-spr 41728
This theorem is referenced by:  prsssprel  41738  sprsymrelfolem2  41743
  Copyright terms: Public domain W3C validator