MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrpredgv Structured version   Visualization version   Unicode version

Theorem upgrpredgv 26034
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v  |-  V  =  (Vtx `  G )
upgredg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
upgrpredgv  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V
) )

Proof of Theorem upgrpredgv
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4  |-  V  =  (Vtx `  G )
2 upgredg.e . . . 4  |-  E  =  (Edg `  G )
31, 2upgredg 26032 . . 3  |-  ( ( G  e. UPGraph  /\  { M ,  N }  e.  E
)  ->  E. m  e.  V  E. n  e.  V  { M ,  N }  =  {
m ,  n }
)
433adant2 1080 . 2  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  E. m  e.  V  E. n  e.  V  { M ,  N }  =  { m ,  n } )
5 preq12bg 4386 . . . . 5  |-  ( ( ( M  e.  U  /\  N  e.  W
)  /\  ( m  e.  V  /\  n  e.  V ) )  -> 
( { M ,  N }  =  {
m ,  n }  <->  ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m ) ) ) )
653ad2antl2 1224 . . . 4  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  ( { M ,  N }  =  { m ,  n } 
<->  ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
) ) )
7 eleq1 2689 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  e.  V  <->  M  e.  V ) )
87eqcoms 2630 . . . . . . . . 9  |-  ( M  =  m  ->  (
m  e.  V  <->  M  e.  V ) )
98biimpd 219 . . . . . . . 8  |-  ( M  =  m  ->  (
m  e.  V  ->  M  e.  V )
)
10 eleq1 2689 . . . . . . . . . 10  |-  ( n  =  N  ->  (
n  e.  V  <->  N  e.  V ) )
1110eqcoms 2630 . . . . . . . . 9  |-  ( N  =  n  ->  (
n  e.  V  <->  N  e.  V ) )
1211biimpd 219 . . . . . . . 8  |-  ( N  =  n  ->  (
n  e.  V  ->  N  e.  V )
)
139, 12im2anan9 880 . . . . . . 7  |-  ( ( M  =  m  /\  N  =  n )  ->  ( ( m  e.  V  /\  n  e.  V )  ->  ( M  e.  V  /\  N  e.  V )
) )
1413com12 32 . . . . . 6  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( M  =  m  /\  N  =  n )  ->  ( M  e.  V  /\  N  e.  V )
) )
15 eleq1 2689 . . . . . . . . . . 11  |-  ( n  =  M  ->  (
n  e.  V  <->  M  e.  V ) )
1615eqcoms 2630 . . . . . . . . . 10  |-  ( M  =  n  ->  (
n  e.  V  <->  M  e.  V ) )
1716biimpd 219 . . . . . . . . 9  |-  ( M  =  n  ->  (
n  e.  V  ->  M  e.  V )
)
18 eleq1 2689 . . . . . . . . . . 11  |-  ( m  =  N  ->  (
m  e.  V  <->  N  e.  V ) )
1918eqcoms 2630 . . . . . . . . . 10  |-  ( N  =  m  ->  (
m  e.  V  <->  N  e.  V ) )
2019biimpd 219 . . . . . . . . 9  |-  ( N  =  m  ->  (
m  e.  V  ->  N  e.  V )
)
2117, 20im2anan9 880 . . . . . . . 8  |-  ( ( M  =  n  /\  N  =  m )  ->  ( ( n  e.  V  /\  m  e.  V )  ->  ( M  e.  V  /\  N  e.  V )
) )
2221com12 32 . . . . . . 7  |-  ( ( n  e.  V  /\  m  e.  V )  ->  ( ( M  =  n  /\  N  =  m )  ->  ( M  e.  V  /\  N  e.  V )
) )
2322ancoms 469 . . . . . 6  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( M  =  n  /\  N  =  m )  ->  ( M  e.  V  /\  N  e.  V )
) )
2414, 23jaod 395 . . . . 5  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
)  ->  ( M  e.  V  /\  N  e.  V ) ) )
2524adantl 482 . . . 4  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  (
( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
)  ->  ( M  e.  V  /\  N  e.  V ) ) )
266, 25sylbid 230 . . 3  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  ( { M ,  N }  =  { m ,  n }  ->  ( M  e.  V  /\  N  e.  V ) ) )
2726rexlimdvva 3038 . 2  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( E. m  e.  V  E. n  e.  V  { M ,  N }  =  {
m ,  n }  ->  ( M  e.  V  /\  N  e.  V
) ) )
284, 27mpd 15 1  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {cpr 4179   ` cfv 5888  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator