MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtrip Structured version   Visualization version   Unicode version

Theorem pythagtrip 15539
Description: Parameterize the Pythagorean triples. If  A,  B, and  C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
pythagtrip  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
Distinct variable groups:    A, k, m, n    B, k, m, n    C, k, m, n

Proof of Theorem pythagtrip
StepHypRef Expression
1 divgcdodd 15422 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
213adant3 1081 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) )
32adantr 481 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
4 pythagtriplem19 15538 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
543expia 1267 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
6 simp12 1092 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  B  e.  NN )
7 simp11 1091 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  A  e.  NN )
8 simp13 1093 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  C  e.  NN )
9 nnsqcl 12933 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
109nncnd 11036 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  CC )
11103ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
12 nnsqcl 12933 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
1312nncnd 11036 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  CC )
14133ad2ant2 1083 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
1511, 14addcomd 10238 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( ( B ^ 2 )  +  ( A ^ 2 ) ) )
1615eqeq1d 2624 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  ( ( B ^ 2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) ) )
1716biimpa 501 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( B ^ 2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) )
18173adant3 1081 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  -> 
( ( B ^
2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) )
19 nnz 11399 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A  e.  ZZ )
20193ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
2120adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  A  e.  ZZ )
22 nnz 11399 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  B  e.  ZZ )
23223ad2ant2 1083 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
2423adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  B  e.  ZZ )
25 gcdcom 15235 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
2621, 24, 25syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
2726oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( B  / 
( A  gcd  B
) )  =  ( B  /  ( B  gcd  A ) ) )
2827breq2d 4665 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( 2  ||  ( B  /  ( A  gcd  B ) )  <->  2  ||  ( B  /  ( B  gcd  A ) ) ) )
2928notbid 308 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( B  /  ( A  gcd  B ) )  <->  -.  2  ||  ( B  /  ( B  gcd  A ) ) ) )
3029biimp3a 1432 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( B  /  ( B  gcd  A ) ) )
31 pythagtriplem19 15538 . . . . . . . 8  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  C  e.  NN )  /\  ( ( B ^
2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( B  gcd  A ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
326, 7, 8, 18, 30, 31syl311anc 1340 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
33323expia 1267 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( -.  2  ||  ( B  /  ( A  gcd  B ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
345, 33orim12d 883 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
353, 34mpd 15 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
36 ovex 6678 . . . . . . . . . . 11  |-  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  e. 
_V
37 ovex 6678 . . . . . . . . . . 11  |-  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  e. 
_V
38 preq12bg 4386 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  e. 
_V  /\  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  e.  _V ) )  ->  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) ) ) )
3936, 37, 38mpanr12 721 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  <-> 
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) ) ) )
4039anbi1d 741 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
4140rexbidv 3052 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. k  e.  NN  ( ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
42412rexbidv 3057 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  (
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
43 andir 912 . . . . . . . . . . 11  |-  ( ( ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
44 df-3an 1039 . . . . . . . . . . . 12  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
45 df-3an 1039 . . . . . . . . . . . 12  |-  ( ( A  =  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
4644, 45orbi12i 543 . . . . . . . . . . 11  |-  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
47 3ancoma 1045 . . . . . . . . . . . 12  |-  ( ( A  =  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
4847orbi2i 541 . . . . . . . . . . 11  |-  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
4943, 46, 483bitr2i 288 . . . . . . . . . 10  |-  ( ( ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
5049rexbii 3041 . . . . . . . . 9  |-  ( E. k  e.  NN  (
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. k  e.  NN  ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
51502rexbii 3042 . . . . . . . 8  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
52 r19.43 3093 . . . . . . . . . 10  |-  ( E. k  e.  NN  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
53522rexbii 3042 . . . . . . . . 9  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
54 r19.43 3093 . . . . . . . . . . 11  |-  ( E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
5554rexbii 3041 . . . . . . . . . 10  |-  ( E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  E. n  e.  NN  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
56 r19.43 3093 . . . . . . . . . 10  |-  ( E. n  e.  NN  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/ 
E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
5755, 56bitri 264 . . . . . . . . 9  |-  ( E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
5853, 57bitri 264 . . . . . . . 8  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
5951, 58bitri 264 . . . . . . 7  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
6042, 59syl6bb 276 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
61603adant3 1081 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
6261adantr 481 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
6335, 62mpbird 247 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
6463ex 450 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
65 pythagtriplem2 15522 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
66653adant3 1081 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
6764, 66impbid 202 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   {cpr 4179   class class class wbr 4653  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ^cexp 12860    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator