MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfval Structured version   Visualization version   Unicode version

Theorem prfval 16839
Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k  |-  P  =  ( F ⟨,⟩F  G )
prfval.b  |-  B  =  ( Base `  C
)
prfval.h  |-  H  =  ( Hom  `  C
)
prfval.c  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
prfval.d  |-  ( ph  ->  G  e.  ( C 
Func  E ) )
Assertion
Ref Expression
prfval  |-  ( ph  ->  P  =  <. (
x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >. )
Distinct variable groups:    x, h, y, B    x, C, y   
h, F, x, y    ph, h, x, y    x, D, y    h, G, x, y    h, H, x, y
Allowed substitution hints:    C( h)    D( h)    P( x, y, h)    E( x, y, h)

Proof of Theorem prfval
Dummy variables  f 
b  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . 2  |-  P  =  ( F ⟨,⟩F  G )
2 df-prf 16815 . . . 4  |- ⟨,⟩F  =  ( f  e. 
_V ,  g  e. 
_V  |->  [_ dom  ( 1st `  f )  /  b ]_ <. ( x  e.  b  |->  <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
) ,  ( x  e.  b ,  y  e.  b  |->  ( h  e.  dom  ( x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
) >. )
32a1i 11 . . 3  |-  ( ph  -> ⟨,⟩F  =  ( f  e.  _V ,  g  e.  _V  |->  [_
dom  ( 1st `  f
)  /  b ]_ <. ( x  e.  b 
|->  <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
) ,  ( x  e.  b ,  y  e.  b  |->  ( h  e.  dom  ( x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
) >. ) )
4 fvex 6201 . . . . . 6  |-  ( 1st `  f )  e.  _V
54dmex 7099 . . . . 5  |-  dom  ( 1st `  f )  e. 
_V
65a1i 11 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  dom  ( 1st `  f
)  e.  _V )
7 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
f  =  F )
87fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  -> 
( 1st `  f
)  =  ( 1st `  F ) )
98dmeqd 5326 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  dom  ( 1st `  f
)  =  dom  ( 1st `  F ) )
10 prfval.b . . . . . . . 8  |-  B  =  ( Base `  C
)
11 eqid 2622 . . . . . . . 8  |-  ( Base `  D )  =  (
Base `  D )
12 relfunc 16522 . . . . . . . . 9  |-  Rel  ( C  Func  D )
13 prfval.c . . . . . . . . 9  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
14 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1512, 13, 14sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1610, 11, 15funcf1 16526 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  D ) )
17 fdm 6051 . . . . . . 7  |-  ( ( 1st `  F ) : B --> ( Base `  D )  ->  dom  ( 1st `  F )  =  B )
1816, 17syl 17 . . . . . 6  |-  ( ph  ->  dom  ( 1st `  F
)  =  B )
1918adantr 481 . . . . 5  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  dom  ( 1st `  F
)  =  B )
209, 19eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  dom  ( 1st `  f
)  =  B )
21 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  b  =  B )
22 simplrl 800 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  f  =  F )
2322fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  ( 1st `  f )  =  ( 1st `  F
) )
2423fveq1d 6193 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
( 1st `  f
) `  x )  =  ( ( 1st `  F ) `  x
) )
25 simplrr 801 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  g  =  G )
2625fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  ( 1st `  g )  =  ( 1st `  G
) )
2726fveq1d 6193 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
( 1st `  g
) `  x )  =  ( ( 1st `  G ) `  x
) )
2824, 27opeq12d 4410 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >.  =  <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. )
2921, 28mpteq12dv 4733 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
x  e.  b  |->  <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. )  =  ( x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) )
30 eqidd 2623 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )  =  ( h  e. 
dom  ( x ( 2nd `  f ) y )  |->  <. (
( x ( 2nd `  f ) y ) `
 h ) ,  ( ( x ( 2nd `  g ) y ) `  h
) >. ) )
3121, 21, 30mpt2eq123dv 6717 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
)  =  ( x  e.  B ,  y  e.  B  |->  ( h  e.  dom  ( x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
) )
3222ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  f  =  F )
3332fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  ( 2nd `  f )  =  ( 2nd `  F
) )
3433oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  (
x ( 2nd `  f
) y )  =  ( x ( 2nd `  F ) y ) )
3534dmeqd 5326 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  dom  ( x ( 2nd `  f ) y )  =  dom  ( x ( 2nd `  F
) y ) )
36 prfval.h . . . . . . . . . . . 12  |-  H  =  ( Hom  `  C
)
37 eqid 2622 . . . . . . . . . . . 12  |-  ( Hom  `  D )  =  ( Hom  `  D )
3815ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
39 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  x  e.  B )
40 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  y  e.  B )
4110, 36, 37, 38, 39, 40funcf2 16528 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  (
x ( 2nd `  F
) y ) : ( x H y ) --> ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  F
) `  y )
) )
42 fdm 6051 . . . . . . . . . . 11  |-  ( ( x ( 2nd `  F
) y ) : ( x H y ) --> ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  F
) `  y )
)  ->  dom  ( x ( 2nd `  F
) y )  =  ( x H y ) )
4341, 42syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  dom  ( x ( 2nd `  F ) y )  =  ( x H y ) )
4435, 43eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  dom  ( x ( 2nd `  f ) y )  =  ( x H y ) )
4534fveq1d 6193 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  (
( x ( 2nd `  f ) y ) `
 h )  =  ( ( x ( 2nd `  F ) y ) `  h
) )
4625ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  g  =  G )
4746fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  ( 2nd `  g )  =  ( 2nd `  G
) )
4847oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  (
x ( 2nd `  g
) y )  =  ( x ( 2nd `  G ) y ) )
4948fveq1d 6193 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  (
( x ( 2nd `  g ) y ) `
 h )  =  ( ( x ( 2nd `  G ) y ) `  h
) )
5045, 49opeq12d 4410 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  <. (
( x ( 2nd `  f ) y ) `
 h ) ,  ( ( x ( 2nd `  g ) y ) `  h
) >.  =  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. )
5144, 50mpteq12dv 4733 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B )  /\  y  e.  B )  ->  (
h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )  =  ( h  e.  ( x H y )  |->  <. ( ( x ( 2nd `  F
) y ) `  h ) ,  ( ( x ( 2nd `  G ) y ) `
 h ) >.
) )
52513impa 1259 . . . . . . 7  |-  ( ( ( ( ph  /\  ( f  =  F  /\  g  =  G ) )  /\  b  =  B )  /\  x  e.  B  /\  y  e.  B )  ->  (
h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )  =  ( h  e.  ( x H y )  |->  <. ( ( x ( 2nd `  F
) y ) `  h ) ,  ( ( x ( 2nd `  G ) y ) `
 h ) >.
) )
5352mpt2eq3dva 6719 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
x  e.  B , 
y  e.  B  |->  ( h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
)  =  ( x  e.  B ,  y  e.  B  |->  ( h  e.  ( x H y )  |->  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. ) ) )
5431, 53eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
)  =  ( x  e.  B ,  y  e.  B  |->  ( h  e.  ( x H y )  |->  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. ) ) )
5529, 54opeq12d 4410 . . . 4  |-  ( ( ( ph  /\  (
f  =  F  /\  g  =  G )
)  /\  b  =  B )  ->  <. (
x  e.  b  |->  <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. ) ,  ( x  e.  b ,  y  e.  b  |->  ( h  e.  dom  (
x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
) >.  =  <. (
x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >. )
566, 20, 55csbied2 3561 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  [_ dom  ( 1st `  f
)  /  b ]_ <. ( x  e.  b 
|->  <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
) ,  ( x  e.  b ,  y  e.  b  |->  ( h  e.  dom  ( x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
) >.  =  <. (
x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >. )
57 elex 3212 . . . 4  |-  ( F  e.  ( C  Func  D )  ->  F  e.  _V )
5813, 57syl 17 . . 3  |-  ( ph  ->  F  e.  _V )
59 prfval.d . . . 4  |-  ( ph  ->  G  e.  ( C 
Func  E ) )
60 elex 3212 . . . 4  |-  ( G  e.  ( C  Func  E )  ->  G  e.  _V )
6159, 60syl 17 . . 3  |-  ( ph  ->  G  e.  _V )
62 opex 4932 . . . 4  |-  <. (
x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >.  e.  _V
6362a1i 11 . . 3  |-  ( ph  -> 
<. ( x  e.  B  |-> 
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >.  e.  _V )
643, 56, 58, 61, 63ovmpt2d 6788 . 2  |-  ( ph  ->  ( F ⟨,⟩F  G )  =  <. ( x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >. )
651, 64syl5eq 2668 1  |-  ( ph  ->  P  =  <. (
x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952    Func cfunc 16514   ⟨,⟩F cprf 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-prf 16815
This theorem is referenced by:  prf1  16840  prf2fval  16841  prfcl  16843  prf1st  16844  prf2nd  16845  1st2ndprf  16846
  Copyright terms: Public domain W3C validator