| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prfval | Structured version Visualization version Unicode version | ||
| Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| prfval.k |
|
| prfval.b |
|
| prfval.h |
|
| prfval.c |
|
| prfval.d |
|
| Ref | Expression |
|---|---|
| prfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k |
. 2
| |
| 2 | df-prf 16815 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | fvex 6201 |
. . . . . 6
| |
| 5 | 4 | dmex 7099 |
. . . . 5
|
| 6 | 5 | a1i 11 |
. . . 4
|
| 7 | simprl 794 |
. . . . . . 7
| |
| 8 | 7 | fveq2d 6195 |
. . . . . 6
|
| 9 | 8 | dmeqd 5326 |
. . . . 5
|
| 10 | prfval.b |
. . . . . . . 8
| |
| 11 | eqid 2622 |
. . . . . . . 8
| |
| 12 | relfunc 16522 |
. . . . . . . . 9
| |
| 13 | prfval.c |
. . . . . . . . 9
| |
| 14 | 1st2ndbr 7217 |
. . . . . . . . 9
| |
| 15 | 12, 13, 14 | sylancr 695 |
. . . . . . . 8
|
| 16 | 10, 11, 15 | funcf1 16526 |
. . . . . . 7
|
| 17 | fdm 6051 |
. . . . . . 7
| |
| 18 | 16, 17 | syl 17 |
. . . . . 6
|
| 19 | 18 | adantr 481 |
. . . . 5
|
| 20 | 9, 19 | eqtrd 2656 |
. . . 4
|
| 21 | simpr 477 |
. . . . . 6
| |
| 22 | simplrl 800 |
. . . . . . . . 9
| |
| 23 | 22 | fveq2d 6195 |
. . . . . . . 8
|
| 24 | 23 | fveq1d 6193 |
. . . . . . 7
|
| 25 | simplrr 801 |
. . . . . . . . 9
| |
| 26 | 25 | fveq2d 6195 |
. . . . . . . 8
|
| 27 | 26 | fveq1d 6193 |
. . . . . . 7
|
| 28 | 24, 27 | opeq12d 4410 |
. . . . . 6
|
| 29 | 21, 28 | mpteq12dv 4733 |
. . . . 5
|
| 30 | eqidd 2623 |
. . . . . . 7
| |
| 31 | 21, 21, 30 | mpt2eq123dv 6717 |
. . . . . 6
|
| 32 | 22 | ad2antrr 762 |
. . . . . . . . . . . . 13
|
| 33 | 32 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 34 | 33 | oveqd 6667 |
. . . . . . . . . . 11
|
| 35 | 34 | dmeqd 5326 |
. . . . . . . . . 10
|
| 36 | prfval.h |
. . . . . . . . . . . 12
| |
| 37 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 38 | 15 | ad4antr 768 |
. . . . . . . . . . . 12
|
| 39 | simplr 792 |
. . . . . . . . . . . 12
| |
| 40 | simpr 477 |
. . . . . . . . . . . 12
| |
| 41 | 10, 36, 37, 38, 39, 40 | funcf2 16528 |
. . . . . . . . . . 11
|
| 42 | fdm 6051 |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . 10
|
| 44 | 35, 43 | eqtrd 2656 |
. . . . . . . . 9
|
| 45 | 34 | fveq1d 6193 |
. . . . . . . . . 10
|
| 46 | 25 | ad2antrr 762 |
. . . . . . . . . . . . 13
|
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 48 | 47 | oveqd 6667 |
. . . . . . . . . . 11
|
| 49 | 48 | fveq1d 6193 |
. . . . . . . . . 10
|
| 50 | 45, 49 | opeq12d 4410 |
. . . . . . . . 9
|
| 51 | 44, 50 | mpteq12dv 4733 |
. . . . . . . 8
|
| 52 | 51 | 3impa 1259 |
. . . . . . 7
|
| 53 | 52 | mpt2eq3dva 6719 |
. . . . . 6
|
| 54 | 31, 53 | eqtrd 2656 |
. . . . 5
|
| 55 | 29, 54 | opeq12d 4410 |
. . . 4
|
| 56 | 6, 20, 55 | csbied2 3561 |
. . 3
|
| 57 | elex 3212 |
. . . 4
| |
| 58 | 13, 57 | syl 17 |
. . 3
|
| 59 | prfval.d |
. . . 4
| |
| 60 | elex 3212 |
. . . 4
| |
| 61 | 59, 60 | syl 17 |
. . 3
|
| 62 | opex 4932 |
. . . 4
| |
| 63 | 62 | a1i 11 |
. . 3
|
| 64 | 3, 56, 58, 61, 63 | ovmpt2d 6788 |
. 2
|
| 65 | 1, 64 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-ixp 7909 df-func 16518 df-prf 16815 |
| This theorem is referenced by: prf1 16840 prf2fval 16841 prfcl 16843 prf1st 16844 prf2nd 16845 1st2ndprf 16846 |
| Copyright terms: Public domain | W3C validator |