Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuccatpfxs1 Structured version   Visualization version   Unicode version

Theorem reuccatpfxs1 41434
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. Could replace reuccats1 13480. (Contributed by AV, 10-May-2020.)
Assertion
Ref Expression
reuccatpfxs1  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! w  e.  X  W  =  ( w prefix  ( # `  W
) ) ) )
Distinct variable groups:    v, V, w, x    v, W, w, x    v, X, w, x

Proof of Theorem reuccatpfxs1
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 s1eq 13380 . . . . 5  |-  ( v  =  u  ->  <" v ">  =  <" u "> )
21oveq2d 6666 . . . 4  |-  ( v  =  u  ->  ( W ++  <" v "> )  =  ( W ++  <" u "> ) )
32eleq1d 2686 . . 3  |-  ( v  =  u  ->  (
( W ++  <" v "> )  e.  X  <->  ( W ++  <" u "> )  e.  X
) )
43reu8 3402 . 2  |-  ( E! v  e.  V  ( W ++  <" v "> )  e.  X  <->  E. v  e.  V  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )
5 simprl 794 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  ( W ++  <" v "> )  e.  X )
6 simpl 473 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  ->  W  e. Word  V )
76ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  W  e. Word  V
)
87anim1i 592 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  ( W  e. Word  V  /\  w  e.  X ) )
9 simplrr 801 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )
10 simp-4r 807 . . . . . . . 8  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W
)  +  1 ) ) )
11 reuccatpfxs1lem 41433 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  w  e.  X
)  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u )  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  ->  ( W  =  ( w prefix  ( # `
 W ) )  ->  w  =  ( W ++  <" v "> ) ) )
128, 9, 10, 11syl3anc 1326 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  ( W  =  ( w prefix  (
# `  W )
)  ->  w  =  ( W ++  <" v "> ) ) )
136anim1i 592 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  ->  ( W  e. Word  V  /\  v  e.  V
) )
1413adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  ( W  e. Word  V  /\  v  e.  V
) )
1514ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  ( W  e. Word  V  /\  v  e.  V ) )
16 lswccats1 13411 . . . . . . . . . . . . . 14  |-  ( ( W  e. Word  V  /\  v  e.  V )  ->  ( lastS  `  ( W ++  <" v "> ) )  =  v )
1715, 16syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  ( lastS  `  ( W ++  <" v "> ) )  =  v )
1817eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  v  =  ( lastS  `  ( W ++  <" v "> )
) )
1918s1eqd 13381 . . . . . . . . . . 11  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  <" v ">  =  <" ( lastS  `  ( W ++  <" v "> ) ) "> )
2019oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  ( W ++  <" v "> )  =  ( W ++  <" ( lastS  `  ( W ++ 
<" v "> ) ) "> ) )
21 id 22 . . . . . . . . . . . 12  |-  ( w  =  ( W ++  <" v "> )  ->  w  =  ( W ++ 
<" v "> ) )
22 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( w  =  ( W ++  <" v "> )  ->  ( lastS  `  w )  =  ( lastS  `  ( W ++ 
<" v "> ) ) )
2322s1eqd 13381 . . . . . . . . . . . . 13  |-  ( w  =  ( W ++  <" v "> )  ->  <" ( lastS  `  w
) ">  =  <" ( lastS  `  ( W ++  <" v "> ) ) "> )
2423oveq2d 6666 . . . . . . . . . . . 12  |-  ( w  =  ( W ++  <" v "> )  ->  ( W ++  <" ( lastS  `  w ) "> )  =  ( W ++  <" ( lastS  `  ( W ++ 
<" v "> ) ) "> ) )
2521, 24eqeq12d 2637 . . . . . . . . . . 11  |-  ( w  =  ( W ++  <" v "> )  ->  ( w  =  ( W ++  <" ( lastS  `  w
) "> )  <->  ( W ++  <" v "> )  =  ( W ++  <" ( lastS  `  ( W ++  <" v "> ) ) "> ) ) )
2625adantl 482 . . . . . . . . . 10  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  ( w  =  ( W ++  <" ( lastS  `  w ) "> )  <->  ( W ++  <" v "> )  =  ( W ++  <" ( lastS  `  ( W ++ 
<" v "> ) ) "> ) ) )
2720, 26mpbird 247 . . . . . . . . 9  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  w  =  ( W ++  <" ( lastS  `  w ) "> ) )
28 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
x  e. Word  V  <->  w  e. Word  V ) )
29 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  ( # `
 x )  =  ( # `  w
) )
3029eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
( # `  x )  =  ( ( # `  W )  +  1 )  <->  ( # `  w
)  =  ( (
# `  W )  +  1 ) ) )
3128, 30anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  (
( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) )  <-> 
( w  e. Word  V  /\  ( # `  w
)  =  ( (
# `  W )  +  1 ) ) ) )
3231rspcva 3307 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  X  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( w  e. Word  V  /\  ( # `  w
)  =  ( (
# `  W )  +  1 ) ) )
33 3anass 1042 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `
 w )  =  ( ( # `  W
)  +  1 ) )  <->  ( W  e. Word  V  /\  ( w  e. Word  V  /\  ( # `  w
)  =  ( (
# `  W )  +  1 ) ) ) )
3433simplbi2com 657 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W )  +  1 ) )  ->  ( W  e. Word  V  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W
)  +  1 ) ) ) )
3532, 34syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  X  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( W  e. Word  V  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W )  +  1 ) ) ) )
3635ex 450 . . . . . . . . . . . . . . 15  |-  ( w  e.  X  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) )  ->  ( W  e. Word  V  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W
)  +  1 ) ) ) ) )
3736com13 88 . . . . . . . . . . . . . 14  |-  ( W  e. Word  V  ->  ( A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) )  ->  (
w  e.  X  -> 
( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W )  +  1 ) ) ) ) )
3837imp 445 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( w  e.  X  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W )  +  1 ) ) ) )
3938ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  ( w  e.  X  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w
)  =  ( (
# `  W )  +  1 ) ) ) )
4039imp 445 . . . . . . . . . . 11  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w )  =  ( ( # `  W
)  +  1 ) ) )
4140adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `  w
)  =  ( (
# `  W )  +  1 ) ) )
42 ccats1pfxeqbi 41431 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  w  e. Word  V  /\  ( # `
 w )  =  ( ( # `  W
)  +  1 ) )  ->  ( W  =  ( w prefix  ( # `
 W ) )  <-> 
w  =  ( W ++ 
<" ( lastS  `  w
) "> )
) )
4341, 42syl 17 . . . . . . . . 9  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  ( W  =  ( w prefix  ( # `
 W ) )  <-> 
w  =  ( W ++ 
<" ( lastS  `  w
) "> )
) )
4427, 43mpbird 247 . . . . . . . 8  |-  ( ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  /\  w  =  ( W ++  <" v "> )
)  ->  W  =  ( w prefix  ( # `  W
) ) )
4544ex 450 . . . . . . 7  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  (
w  =  ( W ++ 
<" v "> )  ->  W  =  ( w prefix  ( # `  W
) ) ) )
4612, 45impbid 202 . . . . . 6  |-  ( ( ( ( ( W  e. Word  V  /\  A. x  e.  X  (
x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  /\  ( ( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  /\  w  e.  X )  ->  ( W  =  ( w prefix  (
# `  W )
)  <->  w  =  ( W ++  <" v "> ) ) )
4746ralrimiva 2966 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  A. w  e.  X  ( W  =  (
w prefix  ( # `  W
) )  <->  w  =  ( W ++  <" v "> ) ) )
48 reu6i 3397 . . . . 5  |-  ( ( ( W ++  <" v "> )  e.  X  /\  A. w  e.  X  ( W  =  (
w prefix  ( # `  W
) )  <->  w  =  ( W ++  <" v "> ) ) )  ->  E! w  e.  X  W  =  ( w prefix  ( # `  W
) ) )
495, 47, 48syl2anc 693 . . . 4  |-  ( ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x
)  =  ( (
# `  W )  +  1 ) ) )  /\  v  e.  V )  /\  (
( W ++  <" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) ) )  ->  E! w  e.  X  W  =  ( w prefix  ( # `  W
) ) )
5049ex 450 . . 3  |-  ( ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  /\  v  e.  V )  ->  ( ( ( W ++ 
<" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )  ->  E! w  e.  X  W  =  ( w prefix  ( # `  W
) ) ) )
5150rexlimdva 3031 . 2  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E. v  e.  V  ( ( W ++ 
<" v "> )  e.  X  /\  A. u  e.  V  ( ( W ++  <" u "> )  e.  X  ->  v  =  u ) )  ->  E! w  e.  X  W  =  ( w prefix  ( # `  W
) ) ) )
524, 51syl5bi 232 1  |-  ( ( W  e. Word  V  /\  A. x  e.  X  ( x  e. Word  V  /\  ( # `  x )  =  ( ( # `  W )  +  1 ) ) )  -> 
( E! v  e.  V  ( W ++  <" v "> )  e.  X  ->  E! w  e.  X  W  =  ( w prefix  ( # `  W
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator