MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgraswap Structured version   Visualization version   Unicode version

Theorem cgraswap 25712
Description: Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p  |-  P  =  ( Base `  G
)
cgraid.i  |-  I  =  (Itv `  G )
cgraid.g  |-  ( ph  ->  G  e. TarskiG )
cgraid.k  |-  K  =  (hlG `  G )
cgraid.a  |-  ( ph  ->  A  e.  P )
cgraid.b  |-  ( ph  ->  B  e.  P )
cgraid.c  |-  ( ph  ->  C  e.  P )
cgraid.1  |-  ( ph  ->  A  =/=  B )
cgraid.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
cgraswap  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" C B A "> )

Proof of Theorem cgraswap
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . . . . 8  |-  P  =  ( Base `  G
)
2 eqid 2622 . . . . . . . 8  |-  ( dist `  G )  =  (
dist `  G )
3 cgraid.i . . . . . . . 8  |-  I  =  (Itv `  G )
4 cgraid.g . . . . . . . . 9  |-  ( ph  ->  G  e. TarskiG )
54ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  G  e. TarskiG )
6 cgraid.b . . . . . . . . 9  |-  ( ph  ->  B  e.  P )
76ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  B  e.  P )
8 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  x  e.  P )
9 cgraid.a . . . . . . . . 9  |-  ( ph  ->  A  e.  P )
109ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  A  e.  P )
11 simprlr 803 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( B ( dist `  G ) x )  =  ( B (
dist `  G ) A ) )
121, 2, 3, 5, 7, 8, 7, 10, 11tgcgrcomlr 25375 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( x ( dist `  G ) B )  =  ( A (
dist `  G ) B ) )
1312eqcomd 2628 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( A ( dist `  G ) B )  =  ( x (
dist `  G ) B ) )
14 simprrr 805 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( B ( dist `  G ) y )  =  ( B (
dist `  G ) C ) )
1514eqcomd 2628 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( B ( dist `  G ) C )  =  ( B (
dist `  G )
y ) )
16 simplr 792 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
y  e.  P )
17 cgraid.c . . . . . . . . 9  |-  ( ph  ->  C  e.  P )
1817ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  C  e.  P )
19 eqid 2622 . . . . . . . . 9  |-  (LineG `  G )  =  (LineG `  G )
20 eqid 2622 . . . . . . . . 9  |-  (cgrG `  G )  =  (cgrG `  G )
21 cgraid.k . . . . . . . . . . . 12  |-  K  =  (hlG `  G )
22 simprll 802 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  x ( K `  B ) C )
231, 3, 21, 8, 18, 7, 5, 19, 22hlln 25502 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  x  e.  ( C
(LineG `  G ) B ) )
2423orcd 407 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( x  e.  ( C (LineG `  G
) B )  \/  C  =  B ) )
251, 19, 3, 5, 18, 7, 8, 24colrot1 25454 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( C  e.  ( B (LineG `  G
) x )  \/  B  =  x ) )
26 eqid 2622 . . . . . . . . . . 11  |-  (≤G `  G )  =  (≤G `  G )
271, 3, 21, 8, 18, 7, 5ishlg 25497 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( x ( K `
 B ) C  <-> 
( x  =/=  B  /\  C  =/=  B  /\  ( x  e.  ( B I C )  \/  C  e.  ( B I x ) ) ) ) )
2822, 27mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( x  =/=  B  /\  C  =/=  B  /\  ( x  e.  ( B I C )  \/  C  e.  ( B I x ) ) ) )
2928simp3d 1075 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( x  e.  ( B I C )  \/  C  e.  ( B I x ) ) )
3029orcomd 403 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( C  e.  ( B I x )  \/  x  e.  ( B I C ) ) )
31 simprrl 804 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
y ( K `  B ) A )
321, 3, 21, 16, 10, 7, 5ishlg 25497 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( y ( K `
 B ) A  <-> 
( y  =/=  B  /\  A  =/=  B  /\  ( y  e.  ( B I A )  \/  A  e.  ( B I y ) ) ) ) )
3331, 32mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( y  =/=  B  /\  A  =/=  B  /\  ( y  e.  ( B I A )  \/  A  e.  ( B I y ) ) ) )
3433simp3d 1075 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( y  e.  ( B I A )  \/  A  e.  ( B I y ) ) )
351, 2, 3, 26, 5, 7, 18, 8, 7, 7, 16, 10, 30, 34, 15, 11tgcgrsub2 25490 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( C ( dist `  G ) x )  =  ( y (
dist `  G ) A ) )
361, 2, 20, 5, 7, 18, 8, 7, 16, 10, 15, 35, 12trgcgr 25411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  <" B C x "> (cgrG `  G ) <" B
y A "> )
371, 2, 3, 5, 18, 16axtgcgrrflx 25361 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( C ( dist `  G ) y )  =  ( y (
dist `  G ) C ) )
38 cgraid.2 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  C )
3938ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  B  =/=  C )
401, 19, 3, 5, 7, 18, 8, 20, 7, 16, 2, 16, 10, 18, 25, 36, 14, 37, 39tgfscgr 25463 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( x ( dist `  G ) y )  =  ( A (
dist `  G ) C ) )
411, 2, 3, 5, 8, 16, 10, 18, 40tgcgrcomlr 25375 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( y ( dist `  G ) x )  =  ( C (
dist `  G ) A ) )
4241eqcomd 2628 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( C ( dist `  G ) A )  =  ( y (
dist `  G )
x ) )
4313, 15, 423jca 1242 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( ( A (
dist `  G ) B )  =  ( x ( dist `  G
) B )  /\  ( B ( dist `  G
) C )  =  ( B ( dist `  G ) y )  /\  ( C (
dist `  G ) A )  =  ( y ( dist `  G
) x ) ) )
4443ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  G  e. TarskiG )
4593ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  A  e.  P )
4663ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  B  e.  P )
47173ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  C  e.  P )
48 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  x  e.  P )
49 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  y  e.  P )
501, 2, 20, 44, 45, 46, 47, 48, 46, 49trgcgrg 25410 . . . . . . 7  |-  ( (
ph  /\  x  e.  P  /\  y  e.  P
)  ->  ( <" A B C "> (cgrG `  G ) <" x B y ">  <->  ( ( A ( dist `  G
) B )  =  ( x ( dist `  G ) B )  /\  ( B (
dist `  G ) C )  =  ( B ( dist `  G
) y )  /\  ( C ( dist `  G
) A )  =  ( y ( dist `  G ) x ) ) ) )
51503expa 1265 . . . . . 6  |-  ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  ->  ( <" A B C "> (cgrG `  G ) <" x B y ">  <->  (
( A ( dist `  G ) B )  =  ( x (
dist `  G ) B )  /\  ( B ( dist `  G
) C )  =  ( B ( dist `  G ) y )  /\  ( C (
dist `  G ) A )  =  ( y ( dist `  G
) x ) ) ) )
5251adantr 481 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( <" A B C "> (cgrG `  G ) <" x B y ">  <->  (
( A ( dist `  G ) B )  =  ( x (
dist `  G ) B )  /\  ( B ( dist `  G
) C )  =  ( B ( dist `  G ) y )  /\  ( C (
dist `  G ) A )  =  ( y ( dist `  G
) x ) ) ) )
5343, 52mpbird 247 . . . 4  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  <" A B C "> (cgrG `  G ) <" x B y "> )
5453, 22, 313jca 1242 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( <" A B C "> (cgrG `  G ) <" x B y ">  /\  x ( K `  B ) C  /\  y ( K `  B ) A ) )
5538necomd 2849 . . . . 5  |-  ( ph  ->  C  =/=  B )
56 cgraid.1 . . . . . 6  |-  ( ph  ->  A  =/=  B )
5756necomd 2849 . . . . 5  |-  ( ph  ->  B  =/=  A )
581, 3, 21, 6, 6, 9, 4, 17, 2, 55, 57hlcgrex 25511 . . . 4  |-  ( ph  ->  E. x  e.  P  ( x ( K `
 B ) C  /\  ( B (
dist `  G )
x )  =  ( B ( dist `  G
) A ) ) )
591, 3, 21, 6, 6, 17, 4, 9, 2, 56, 38hlcgrex 25511 . . . 4  |-  ( ph  ->  E. y  e.  P  ( y ( K `
 B ) A  /\  ( B (
dist `  G )
y )  =  ( B ( dist `  G
) C ) ) )
60 reeanv 3107 . . . 4  |-  ( E. x  e.  P  E. y  e.  P  (
( x ( K `
 B ) C  /\  ( B (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  B ) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) )  <->  ( E. x  e.  P  (
x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  E. y  e.  P  ( y
( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )
6158, 59, 60sylanbrc 698 . . 3  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( ( x ( K `  B ) C  /\  ( B ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  B
) A  /\  ( B ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )
6254, 61reximddv2 3020 . 2  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( <" A B C "> (cgrG `  G ) <" x B y ">  /\  x ( K `  B ) C  /\  y ( K `  B ) A ) )
631, 3, 21, 4, 9, 6, 17, 17, 6, 9iscgra 25701 . 2  |-  ( ph  ->  ( <" A B C "> (cgrA `  G ) <" C B A ">  <->  E. x  e.  P  E. y  e.  P  ( <" A B C "> (cgrG `  G ) <" x B y ">  /\  x
( K `  B
) C  /\  y
( K `  B
) A ) ) )
6462, 63mpbird 247 1  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" C B A "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  ≤Gcleg 25477  hlGchlg 25495  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-cgra 25700
This theorem is referenced by:  cgraswaplr  25716  oacgr  25723  tgasa1  25739  isoas  25744
  Copyright terms: Public domain W3C validator