MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgratr Structured version   Visualization version   Unicode version

Theorem cgratr 25715
Description: Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p  |-  P  =  ( Base `  G
)
cgraid.i  |-  I  =  (Itv `  G )
cgraid.g  |-  ( ph  ->  G  e. TarskiG )
cgraid.k  |-  K  =  (hlG `  G )
cgraid.a  |-  ( ph  ->  A  e.  P )
cgraid.b  |-  ( ph  ->  B  e.  P )
cgraid.c  |-  ( ph  ->  C  e.  P )
cgracom.d  |-  ( ph  ->  D  e.  P )
cgracom.e  |-  ( ph  ->  E  e.  P )
cgracom.f  |-  ( ph  ->  F  e.  P )
cgracom.1  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
cgratr.h  |-  ( ph  ->  H  e.  P )
cgratr.i  |-  ( ph  ->  U  e.  P )
cgratr.j  |-  ( ph  ->  J  e.  P )
cgratr.1  |-  ( ph  ->  <" D E F "> (cgrA `  G ) <" H U J "> )
Assertion
Ref Expression
cgratr  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" H U J "> )

Proof of Theorem cgratr
Dummy variables  x  y  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5  |-  P  =  ( Base `  G
)
2 eqid 2622 . . . . 5  |-  ( dist `  G )  =  (
dist `  G )
3 eqid 2622 . . . . 5  |-  (cgrG `  G )  =  (cgrG `  G )
4 cgraid.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
54ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  G  e. TarskiG )
6 cgraid.a . . . . . 6  |-  ( ph  ->  A  e.  P )
76ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  A  e.  P )
8 cgraid.b . . . . . 6  |-  ( ph  ->  B  e.  P )
98ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  B  e.  P )
10 cgraid.c . . . . . 6  |-  ( ph  ->  C  e.  P )
1110ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  C  e.  P )
12 simpllr 799 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  x  e.  P )
13 cgratr.i . . . . . 6  |-  ( ph  ->  U  e.  P )
1413ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  U  e.  P )
15 simplr 792 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
y  e.  P )
16 cgraid.i . . . . . 6  |-  I  =  (Itv `  G )
17 simprlr 803 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( U ( dist `  G ) x )  =  ( B (
dist `  G ) A ) )
1817eqcomd 2628 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( B ( dist `  G ) A )  =  ( U (
dist `  G )
x ) )
191, 2, 16, 5, 9, 7, 14, 12, 18tgcgrcomlr 25375 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( A ( dist `  G ) B )  =  ( x (
dist `  G ) U ) )
20 simprrr 805 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( U ( dist `  G ) y )  =  ( B (
dist `  G ) C ) )
2120eqcomd 2628 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( B ( dist `  G ) C )  =  ( U (
dist `  G )
y ) )
225ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  G  e. TarskiG )
237ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  A  e.  P
)
249ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  B  e.  P
)
2511ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  C  e.  P
)
26 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  u  e.  P
)
27 cgracom.e . . . . . . . . 9  |-  ( ph  ->  E  e.  P )
2827ad6antr 772 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  E  e.  P
)
29 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  v  e.  P
)
30 simpr1 1067 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  <" A B C "> (cgrG `  G ) <" u E v "> )
311, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp3 25417 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( C (
dist `  G ) A )  =  ( v ( dist `  G
) u ) )
3212ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  x  e.  P
)
3315ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  y  e.  P
)
34 cgraid.k . . . . . . . . 9  |-  K  =  (hlG `  G )
35 cgracom.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  P )
3635ad6antr 772 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  D  e.  P
)
37 cgracom.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  P )
3837ad6antr 772 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  F  e.  P
)
3914ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  U  e.  P
)
40 cgratr.j . . . . . . . . . . 11  |-  ( ph  ->  J  e.  P )
4140ad6antr 772 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  J  e.  P
)
42 cgratr.h . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  P )
4342ad6antr 772 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  H  e.  P
)
44 cgratr.1 . . . . . . . . . . . 12  |-  ( ph  ->  <" D E F "> (cgrA `  G ) <" H U J "> )
4544ad6antr 772 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  <" D E F "> (cgrA `  G ) <" H U J "> )
46 simprll 802 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  x ( K `  U ) H )
4746ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  x ( K `
 U ) H )
481, 16, 34, 22, 36, 28, 38, 43, 39, 41, 45, 32, 47cgrahl1 25708 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  <" D E F "> (cgrA `  G ) <" x U J "> )
49 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
y ( K `  U ) J )
5049ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  y ( K `
 U ) J )
511, 16, 34, 22, 36, 28, 38, 32, 39, 41, 48, 33, 50cgrahl2 25709 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  <" D E F "> (cgrA `  G ) <" x U y "> )
52 simpr2 1068 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  u ( K `
 E ) D )
53 simpr3 1069 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  v ( K `
 E ) F )
541, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp1 25415 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( A (
dist `  G ) B )  =  ( u ( dist `  G
) E ) )
5554eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( u (
dist `  G ) E )  =  ( A ( dist `  G
) B ) )
561, 2, 16, 22, 26, 28, 23, 24, 55tgcgrcomlr 25375 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( E (
dist `  G )
u )  =  ( B ( dist `  G
) A ) )
5718ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( B (
dist `  G ) A )  =  ( U ( dist `  G
) x ) )
5856, 57eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( E (
dist `  G )
u )  =  ( U ( dist `  G
) x ) )
591, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp2 25416 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( B (
dist `  G ) C )  =  ( E ( dist `  G
) v ) )
6059eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( E (
dist `  G )
v )  =  ( B ( dist `  G
) C ) )
6121ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( B (
dist `  G ) C )  =  ( U ( dist `  G
) y ) )
6260, 61eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( E (
dist `  G )
v )  =  ( U ( dist `  G
) y ) )
631, 16, 34, 22, 36, 28, 38, 32, 39, 33, 51, 26, 2, 29, 52, 53, 58, 62cgracgr 25710 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( u (
dist `  G )
v )  =  ( x ( dist `  G
) y ) )
641, 2, 16, 22, 26, 29, 32, 33, 63tgcgrcomlr 25375 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( v (
dist `  G )
u )  =  ( y ( dist `  G
) x ) )
6531, 64eqtrd 2656 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P )  /\  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  /\  u  e.  P )  /\  v  e.  P
)  /\  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) )  ->  ( C (
dist `  G ) A )  =  ( y ( dist `  G
) x ) )
66 cgracom.1 . . . . . . . 8  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" D E F "> )
671, 16, 34, 4, 6, 8, 10, 35, 27, 37iscgra 25701 . . . . . . . 8  |-  ( ph  ->  ( <" A B C "> (cgrA `  G ) <" D E F ">  <->  E. u  e.  P  E. v  e.  P  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u
( K `  E
) D  /\  v
( K `  E
) F ) ) )
6866, 67mpbid 222 . . . . . . 7  |-  ( ph  ->  E. u  e.  P  E. v  e.  P  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u ( K `  E ) D  /\  v ( K `  E ) F ) )
6968ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  E. u  e.  P  E. v  e.  P  ( <" A B C "> (cgrG `  G ) <" u E v ">  /\  u ( K `  E ) D  /\  v ( K `  E ) F ) )
7065, 69r19.29vva 3081 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( C ( dist `  G ) A )  =  ( y (
dist `  G )
x ) )
711, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 70trgcgr 25411 . . . 4  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  ->  <" A B C "> (cgrG `  G ) <" x U y "> )
7271, 46, 493jca 1242 . . 3  |-  ( ( ( ( ph  /\  x  e.  P )  /\  y  e.  P
)  /\  ( (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )  -> 
( <" A B C "> (cgrG `  G ) <" x U y ">  /\  x ( K `  U ) H  /\  y ( K `  U ) J ) )
731, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane3 25706 . . . . . 6  |-  ( ph  ->  U  =/=  H )
7473necomd 2849 . . . . 5  |-  ( ph  ->  H  =/=  U )
751, 16, 34, 4, 6, 8, 10, 35, 27, 37, 66cgrane1 25704 . . . . . 6  |-  ( ph  ->  A  =/=  B )
7675necomd 2849 . . . . 5  |-  ( ph  ->  B  =/=  A )
771, 16, 34, 13, 8, 6, 4, 42, 2, 74, 76hlcgrex 25511 . . . 4  |-  ( ph  ->  E. x  e.  P  ( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) ) )
781, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane4 25707 . . . . . 6  |-  ( ph  ->  U  =/=  J )
7978necomd 2849 . . . . 5  |-  ( ph  ->  J  =/=  U )
801, 16, 34, 4, 6, 8, 10, 35, 27, 37, 66cgrane2 25705 . . . . 5  |-  ( ph  ->  B  =/=  C )
811, 16, 34, 13, 8, 10, 4, 40, 2, 79, 80hlcgrex 25511 . . . 4  |-  ( ph  ->  E. y  e.  P  ( y ( K `
 U ) J  /\  ( U (
dist `  G )
y )  =  ( B ( dist `  G
) C ) ) )
82 reeanv 3107 . . . 4  |-  ( E. x  e.  P  E. y  e.  P  (
( x ( K `
 U ) H  /\  ( U (
dist `  G )
x )  =  ( B ( dist `  G
) A ) )  /\  ( y ( K `  U ) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) )  <->  ( E. x  e.  P  (
x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  E. y  e.  P  ( y
( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )
8377, 81, 82sylanbrc 698 . . 3  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( ( x ( K `  U ) H  /\  ( U ( dist `  G
) x )  =  ( B ( dist `  G ) A ) )  /\  ( y ( K `  U
) J  /\  ( U ( dist `  G
) y )  =  ( B ( dist `  G ) C ) ) ) )
8472, 83reximddv2 3020 . 2  |-  ( ph  ->  E. x  e.  P  E. y  e.  P  ( <" A B C "> (cgrG `  G ) <" x U y ">  /\  x ( K `  U ) H  /\  y ( K `  U ) J ) )
851, 16, 34, 4, 6, 8, 10, 42, 13, 40iscgra 25701 . 2  |-  ( ph  ->  ( <" A B C "> (cgrA `  G ) <" H U J ">  <->  E. x  e.  P  E. y  e.  P  ( <" A B C "> (cgrG `  G ) <" x U y ">  /\  x
( K `  U
) H  /\  y
( K `  U
) J ) ) )
8684, 85mpbird 247 1  |-  ( ph  ->  <" A B C "> (cgrA `  G ) <" H U J "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  cgrGccgrg 25405  hlGchlg 25495  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-cgra 25700
This theorem is referenced by:  cgraswaplr  25716  sacgr  25722  oacgr  25723  tgasa1  25739  isoas  25744
  Copyright terms: Public domain W3C validator