| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnemeet1 | Structured version Visualization version Unicode version | ||
| Description: The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| fnemeet1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitg 20771 |
. . . . . . . 8
| |
| 2 | 1 | adantl 482 |
. . . . . . 7
|
| 3 | unieq 4444 |
. . . . . . . . . 10
| |
| 4 | 3 | eqeq2d 2632 |
. . . . . . . . 9
|
| 5 | 4 | rspccva 3308 |
. . . . . . . 8
|
| 6 | 5 | 3ad2antl2 1224 |
. . . . . . 7
|
| 7 | 2, 6 | eqtr4d 2659 |
. . . . . 6
|
| 8 | eqimss 3657 |
. . . . . 6
| |
| 9 | 7, 8 | syl 17 |
. . . . 5
|
| 10 | sspwuni 4611 |
. . . . 5
| |
| 11 | 9, 10 | sylibr 224 |
. . . 4
|
| 12 | 11 | ralrimiva 2966 |
. . 3
|
| 13 | ne0i 3921 |
. . . 4
| |
| 14 | 13 | 3ad2ant3 1084 |
. . 3
|
| 15 | riinn0 4595 |
. . 3
| |
| 16 | 12, 14, 15 | syl2anc 693 |
. 2
|
| 17 | simp3 1063 |
. . . . . . . 8
| |
| 18 | ssid 3624 |
. . . . . . . 8
| |
| 19 | fveq2 6191 |
. . . . . . . . . 10
| |
| 20 | 19 | sseq1d 3632 |
. . . . . . . . 9
|
| 21 | 20 | rspcev 3309 |
. . . . . . . 8
|
| 22 | 17, 18, 21 | sylancl 694 |
. . . . . . 7
|
| 23 | iinss 4571 |
. . . . . . 7
| |
| 24 | 22, 23 | syl 17 |
. . . . . 6
|
| 25 | 24 | unissd 4462 |
. . . . 5
|
| 26 | unitg 20771 |
. . . . . 6
| |
| 27 | 26 | 3ad2ant3 1084 |
. . . . 5
|
| 28 | 25, 27 | sseqtrd 3641 |
. . . 4
|
| 29 | unieq 4444 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | eqeq2d 2632 |
. . . . . . . . . . . 12
|
| 31 | 30 | rspccva 3308 |
. . . . . . . . . . 11
|
| 32 | 31 | 3adant1 1079 |
. . . . . . . . . 10
|
| 33 | 32 | adantr 481 |
. . . . . . . . 9
|
| 34 | 33, 6 | eqtr3d 2658 |
. . . . . . . 8
|
| 35 | simpr 477 |
. . . . . . . . 9
| |
| 36 | ssid 3624 |
. . . . . . . . 9
| |
| 37 | eltg3i 20765 |
. . . . . . . . 9
| |
| 38 | 35, 36, 37 | sylancl 694 |
. . . . . . . 8
|
| 39 | 34, 38 | eqeltrd 2701 |
. . . . . . 7
|
| 40 | 39 | ralrimiva 2966 |
. . . . . 6
|
| 41 | uniexg 6955 |
. . . . . . . 8
| |
| 42 | 41 | 3ad2ant3 1084 |
. . . . . . 7
|
| 43 | eliin 4525 |
. . . . . . 7
| |
| 44 | 42, 43 | syl 17 |
. . . . . 6
|
| 45 | 40, 44 | mpbird 247 |
. . . . 5
|
| 46 | elssuni 4467 |
. . . . 5
| |
| 47 | 45, 46 | syl 17 |
. . . 4
|
| 48 | 28, 47 | eqssd 3620 |
. . 3
|
| 49 | eqid 2622 |
. . . 4
| |
| 50 | eqid 2622 |
. . . 4
| |
| 51 | 49, 50 | isfne4 32335 |
. . 3
|
| 52 | 48, 24, 51 | sylanbrc 698 |
. 2
|
| 53 | 16, 52 | eqbrtrd 4675 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-fne 32332 |
| This theorem is referenced by: fnemeet2 32362 |
| Copyright terms: Public domain | W3C validator |