Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   Unicode version

Theorem finxpreclem4 33231
Description: Lemma for  ^^ ^^ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
Assertion
Ref Expression
finxpreclem4  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. N , 
y >. ) `  N
)  =  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  U. N ) )
Distinct variable groups:    n, N, x    U, n, x    y, n, x
Allowed substitution hints:    U( y)    F( x, y, n)    N( y)

Proof of Theorem finxpreclem4
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 2onn 7720 . . . . . . . 8  |-  2o  e.  om
2 nnon 7071 . . . . . . . . . . 11  |-  ( N  e.  om  ->  N  e.  On )
3 2on 7568 . . . . . . . . . . . . . 14  |-  2o  e.  On
4 oawordeu 7635 . . . . . . . . . . . . . 14  |-  ( ( ( 2o  e.  On  /\  N  e.  On )  /\  2o  C_  N
)  ->  E! o  e.  On  ( 2o  +o  o )  =  N )
53, 4mpanl1 716 . . . . . . . . . . . . 13  |-  ( ( N  e.  On  /\  2o  C_  N )  ->  E! o  e.  On  ( 2o  +o  o
)  =  N )
6 riotasbc 6626 . . . . . . . . . . . . 13  |-  ( E! o  e.  On  ( 2o  +o  o )  =  N  ->  [. ( iota_ o  e.  On  ( 2o 
+o  o )  =  N )  /  o ]. ( 2o  +o  o
)  =  N )
75, 6syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  On  /\  2o  C_  N )  ->  [. ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  /  o ]. ( 2o  +o  o )  =  N )
8 riotaex 6615 . . . . . . . . . . . . . 14  |-  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N )  e.  _V
9 sbceq1g 3988 . . . . . . . . . . . . . 14  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  _V  ->  ( [. ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  /  o ]. ( 2o  +o  o )  =  N  <->  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ ( 2o  +o  o
)  =  N ) )
108, 9ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  /  o ]. ( 2o  +o  o )  =  N  <->  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ ( 2o  +o  o
)  =  N )
11 csbov2g 6691 . . . . . . . . . . . . . . . 16  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  _V  ->  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ ( 2o  +o  o
)  =  ( 2o 
+o  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ o ) )
128, 11ax-mp 5 . . . . . . . . . . . . . . 15  |-  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ ( 2o  +o  o
)  =  ( 2o 
+o  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ o )
13 csbvarg 4003 . . . . . . . . . . . . . . . . 17  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  _V  ->  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ o  =  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )
148, 13ax-mp 5 . . . . . . . . . . . . . . . 16  |-  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ o  =  ( iota_ o  e.  On  ( 2o  +o  o )  =  N )
1514oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( 2o 
+o  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ o )  =  ( 2o  +o  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N ) )
1612, 15eqtri 2644 . . . . . . . . . . . . . 14  |-  [_ ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  /  o ]_ ( 2o  +o  o
)  =  ( 2o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )
1716eqeq1i 2627 . . . . . . . . . . . . 13  |-  ( [_ ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  /  o ]_ ( 2o  +o  o )  =  N  <->  ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N ) )  =  N )
1810, 17bitri 264 . . . . . . . . . . . 12  |-  ( [. ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  /  o ]. ( 2o  +o  o )  =  N  <->  ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N ) )  =  N )
197, 18sylib 208 . . . . . . . . . . 11  |-  ( ( N  e.  On  /\  2o  C_  N )  -> 
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  =  N )
202, 19sylan 488 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  =  N )
21 simpl 473 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  N  e.  om )
2220, 21eqeltrd 2701 . . . . . . . . 9  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  e. 
om )
23 riotacl 6625 . . . . . . . . . . 11  |-  ( E! o  e.  On  ( 2o  +o  o )  =  N  ->  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N )  e.  On )
24 riotaund 6647 . . . . . . . . . . . 12  |-  ( -.  E! o  e.  On  ( 2o  +o  o
)  =  N  -> 
( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  =  (/) )
25 0elon 5778 . . . . . . . . . . . 12  |-  (/)  e.  On
2624, 25syl6eqel 2709 . . . . . . . . . . 11  |-  ( -.  E! o  e.  On  ( 2o  +o  o
)  =  N  -> 
( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  On )
2723, 26pm2.61i 176 . . . . . . . . . 10  |-  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N )  e.  On
28 nnarcl 7696 . . . . . . . . . . . 12  |-  ( ( 2o  e.  On  /\  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  On )  -> 
( ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N ) )  e.  om  <->  ( 2o  e.  om  /\  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N )  e.  om ) ) )
293, 28mpan 706 . . . . . . . . . . 11  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  On  ->  (
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  e. 
om 
<->  ( 2o  e.  om  /\  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om ) ) )
301biantrur 527 . . . . . . . . . . 11  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om  <->  ( 2o  e.  om  /\  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N )  e.  om ) )
3129, 30syl6bbr 278 . . . . . . . . . 10  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  On  ->  (
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  e. 
om 
<->  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om ) )
3227, 31ax-mp 5 . . . . . . . . 9  |-  ( ( 2o  +o  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N ) )  e. 
om 
<->  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om )
3322, 32sylib 208 . . . . . . . 8  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om )
34 nnacom 7697 . . . . . . . 8  |-  ( ( 2o  e.  om  /\  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om )  -> 
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  =  ( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  2o ) )
351, 33, 34sylancr 695 . . . . . . 7  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  =  ( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  2o ) )
36 df-2o 7561 . . . . . . . . 9  |-  2o  =  suc  1o
3736oveq2i 6661 . . . . . . . 8  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  2o )  =  ( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  suc  1o )
38 1onn 7719 . . . . . . . . 9  |-  1o  e.  om
39 nnasuc 7686 . . . . . . . . 9  |-  ( ( ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om  /\  1o  e.  om )  ->  (
( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  suc  1o )  =  suc  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  1o ) )
4033, 38, 39sylancl 694 . . . . . . . 8  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  suc  1o )  =  suc  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  1o ) )
4137, 40syl5eq 2668 . . . . . . 7  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  2o )  =  suc  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  1o ) )
4235, 20, 413eqtr3d 2664 . . . . . 6  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  N  =  suc  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  1o ) )
432adantr 481 . . . . . . 7  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  N  e.  On )
44 sucidg 5803 . . . . . . . . . . . 12  |-  ( 1o  e.  om  ->  1o  e.  suc  1o )
4538, 44ax-mp 5 . . . . . . . . . . 11  |-  1o  e.  suc  1o
4645, 36eleqtrri 2700 . . . . . . . . . 10  |-  1o  e.  2o
47 ssel 3597 . . . . . . . . . 10  |-  ( 2o  C_  N  ->  ( 1o  e.  2o  ->  1o  e.  N ) )
4846, 47mpi 20 . . . . . . . . 9  |-  ( 2o  C_  N  ->  1o  e.  N )
49 ne0i 3921 . . . . . . . . 9  |-  ( 1o  e.  N  ->  N  =/=  (/) )
5048, 49syl 17 . . . . . . . 8  |-  ( 2o  C_  N  ->  N  =/=  (/) )
5150adantl 482 . . . . . . 7  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  N  =/=  (/) )
52 nnlim 7078 . . . . . . . 8  |-  ( N  e.  om  ->  -.  Lim  N )
5352adantr 481 . . . . . . 7  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  -.  Lim  N )
54 onsucuni3 33215 . . . . . . 7  |-  ( ( N  e.  On  /\  N  =/=  (/)  /\  -.  Lim  N )  ->  N  =  suc  U. N )
5543, 51, 53, 54syl3anc 1326 . . . . . 6  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  N  =  suc  U. N
)
56 nnacom 7697 . . . . . . . 8  |-  ( ( ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om  /\  1o  e.  om )  ->  (
( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  1o )  =  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )
5733, 38, 56sylancl 694 . . . . . . 7  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  1o )  =  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N ) ) )
58 suceq 5790 . . . . . . 7  |-  ( ( ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  +o  1o )  =  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  ->  suc  ( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  1o )  =  suc  ( 1o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )
5957, 58syl 17 . . . . . 6  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  suc  ( ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  +o  1o )  =  suc  ( 1o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )
6042, 55, 593eqtr3d 2664 . . . . 5  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  suc  U. N  =  suc  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )
61 ordom 7074 . . . . . . . . 9  |-  Ord  om
62 ordelss 5739 . . . . . . . . 9  |-  ( ( Ord  om  /\  N  e.  om )  ->  N  C_ 
om )
6361, 62mpan 706 . . . . . . . 8  |-  ( N  e.  om  ->  N  C_ 
om )
64 nnfi 8153 . . . . . . . 8  |-  ( N  e.  om  ->  N  e.  Fin )
65 nnunifi 8211 . . . . . . . 8  |-  ( ( N  C_  om  /\  N  e.  Fin )  ->  U. N  e.  om )
6663, 64, 65syl2anc 693 . . . . . . 7  |-  ( N  e.  om  ->  U. N  e.  om )
6766adantr 481 . . . . . 6  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  U. N  e.  om )
68 nnacl 7691 . . . . . . 7  |-  ( ( 1o  e.  om  /\  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om )  -> 
( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  e. 
om )
6938, 33, 68sylancr 695 . . . . . 6  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  e. 
om )
70 peano4 7088 . . . . . 6  |-  ( ( U. N  e.  om  /\  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  e. 
om )  ->  ( suc  U. N  =  suc  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) )  <->  U. N  =  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) ) )
7167, 69, 70syl2anc 693 . . . . 5  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( suc  U. N  =  suc  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o
)  =  N ) )  <->  U. N  =  ( 1o  +o  ( iota_ o  e.  On  ( 2o 
+o  o )  =  N ) ) ) )
7260, 71mpbid 222 . . . 4  |-  ( ( N  e.  om  /\  2o  C_  N )  ->  U. N  =  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )
7372fveq2d 6195 . . 3  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  U. N
)  =  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  ( 1o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) ) )
7473adantr 481 . 2  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. U. N ,  ( 1st `  y
) >. ) `  U. N )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  ( 1o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) ) )
7533adantr 481 . . 3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  e.  om )
76 finxpreclem4.1 . . . . . . 7  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
7776finxpreclem3 33230 . . . . . 6  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  <. U. N ,  ( 1st `  y )
>.  =  ( F `  <. N ,  y
>. ) )
78 df-1o 7560 . . . . . . . 8  |-  1o  =  suc  (/)
7978fveq2i 6194 . . . . . . 7  |-  ( rec ( F ,  <. N ,  y >. ) `  1o )  =  ( rec ( F ,  <. N ,  y >.
) `  suc  (/) )
80 rdgsuc 7520 . . . . . . . 8  |-  ( (/)  e.  On  ->  ( rec ( F ,  <. N , 
y >. ) `  suc  (/) )  =  ( F `
 ( rec ( F ,  <. N , 
y >. ) `  (/) ) ) )
8125, 80ax-mp 5 . . . . . . 7  |-  ( rec ( F ,  <. N ,  y >. ) `  suc  (/) )  =  ( F `  ( rec ( F ,  <. N ,  y >. ) `  (/) ) )
82 opex 4932 . . . . . . . . 9  |-  <. N , 
y >.  e.  _V
8382rdg0 7517 . . . . . . . 8  |-  ( rec ( F ,  <. N ,  y >. ) `  (/) )  =  <. N ,  y >.
8483fveq2i 6194 . . . . . . 7  |-  ( F `
 ( rec ( F ,  <. N , 
y >. ) `  (/) ) )  =  ( F `  <. N ,  y >.
)
8579, 81, 843eqtri 2648 . . . . . 6  |-  ( rec ( F ,  <. N ,  y >. ) `  1o )  =  ( F `  <. N , 
y >. )
8677, 85syl6reqr 2675 . . . . 5  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. N , 
y >. ) `  1o )  =  <. U. N ,  ( 1st `  y
) >. )
8786fveq2d 6195 . . . 4  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( F `  ( rec ( F ,  <. N ,  y >.
) `  1o )
)  =  ( F `
 <. U. N ,  ( 1st `  y )
>. ) )
88 2on0 7569 . . . . . 6  |-  2o  =/=  (/)
89 nnlim 7078 . . . . . . 7  |-  ( 2o  e.  om  ->  -.  Lim  2o )
901, 89ax-mp 5 . . . . . 6  |-  -.  Lim  2o
91 rdgsucuni 33217 . . . . . 6  |-  ( ( 2o  e.  On  /\  2o  =/=  (/)  /\  -.  Lim  2o )  ->  ( rec ( F ,  <. N , 
y >. ) `  2o )  =  ( F `  ( rec ( F ,  <. N ,  y
>. ) `  U. 2o ) ) )
923, 88, 90, 91mp3an 1424 . . . . 5  |-  ( rec ( F ,  <. N ,  y >. ) `  2o )  =  ( F `  ( rec ( F ,  <. N ,  y >. ) `  U. 2o ) )
93 1oequni2o 33216 . . . . . . 7  |-  1o  =  U. 2o
9493fveq2i 6194 . . . . . 6  |-  ( rec ( F ,  <. N ,  y >. ) `  1o )  =  ( rec ( F ,  <. N ,  y >.
) `  U. 2o )
9594fveq2i 6194 . . . . 5  |-  ( F `
 ( rec ( F ,  <. N , 
y >. ) `  1o ) )  =  ( F `  ( rec ( F ,  <. N ,  y >. ) `  U. 2o ) )
9692, 95eqtr4i 2647 . . . 4  |-  ( rec ( F ,  <. N ,  y >. ) `  2o )  =  ( F `  ( rec ( F ,  <. N ,  y >. ) `  1o ) )
9778fveq2i 6194 . . . . 5  |-  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  1o )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  suc  (/) )
98 rdgsuc 7520 . . . . . 6  |-  ( (/)  e.  On  ->  ( rec ( F ,  <. U. N ,  ( 1st `  y
) >. ) `  suc  (/) )  =  ( F `
 ( rec ( F ,  <. U. N ,  ( 1st `  y
) >. ) `  (/) ) ) )
9925, 98ax-mp 5 . . . . 5  |-  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  suc  (/) )  =  ( F `  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  (/) ) )
100 opex 4932 . . . . . . 7  |-  <. U. N ,  ( 1st `  y
) >.  e.  _V
101100rdg0 7517 . . . . . 6  |-  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  (/) )  =  <. U. N ,  ( 1st `  y ) >.
102101fveq2i 6194 . . . . 5  |-  ( F `
 ( rec ( F ,  <. U. N ,  ( 1st `  y
) >. ) `  (/) ) )  =  ( F `  <. U. N ,  ( 1st `  y )
>. )
10397, 99, 1023eqtri 2648 . . . 4  |-  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  1o )  =  ( F `  <. U. N ,  ( 1st `  y
) >. )
10487, 96, 1033eqtr4g 2681 . . 3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. N , 
y >. ) `  2o )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y
) >. ) `  1o ) )
105 1on 7567 . . . 4  |-  1o  e.  On
106 rdgeqoa 33218 . . . 4  |-  ( ( 2o  e.  On  /\  1o  e.  On  /\  ( iota_ o  e.  On  ( 2o  +o  o )  =  N )  e.  om )  ->  ( ( rec ( F ,  <. N ,  y >. ) `  2o )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  1o )  ->  ( rec ( F ,  <. N , 
y >. ) `  ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  ( 1o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) ) ) )
1073, 105, 106mp3an12 1414 . . 3  |-  ( (
iota_ o  e.  On  ( 2o  +o  o
)  =  N )  e.  om  ->  (
( rec ( F ,  <. N ,  y
>. ) `  2o )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y
) >. ) `  1o )  ->  ( rec ( F ,  <. N , 
y >. ) `  ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  ( 1o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) ) ) )
10875, 104, 107sylc 65 . 2  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. N , 
y >. ) `  ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )  =  ( rec ( F ,  <. U. N ,  ( 1st `  y )
>. ) `  ( 1o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) ) )
10920fveq2d 6195 . . 3  |-  ( ( N  e.  om  /\  2o  C_  N )  -> 
( rec ( F ,  <. N ,  y
>. ) `  ( 2o 
+o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )  =  ( rec ( F ,  <. N ,  y
>. ) `  N ) )
110109adantr 481 . 2  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. N , 
y >. ) `  ( 2o  +o  ( iota_ o  e.  On  ( 2o  +o  o )  =  N ) ) )  =  ( rec ( F ,  <. N ,  y
>. ) `  N ) )
11174, 108, 1103eqtr2rd 2663 1  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. N , 
y >. ) `  N
)  =  ( rec ( F ,  <. U. N ,  ( 1st `  y ) >. ) `  U. N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E!wreu 2914   _Vcvv 3200   [.wsbc 3435   [_csb 3533    C_ wss 3574   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   reccrdg 7505   1oc1o 7553   2oc2o 7554    +o coa 7557   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  finxpsuclem  33234
  Copyright terms: Public domain W3C validator