MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1 Structured version   Visualization version   Unicode version

Theorem rlimcn1 14319
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn1.1  |-  ( ph  ->  G : A --> X )
rlimcn1.2  |-  ( ph  ->  C  e.  X )
rlimcn1.3  |-  ( ph  ->  G  ~~> r  C )
rlimcn1.4  |-  ( ph  ->  F : X --> CC )
rlimcn1.5  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  X  ( ( abs `  ( z  -  C
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) )
Assertion
Ref Expression
rlimcn1  |-  ( ph  ->  ( F  o.  G
)  ~~> r  ( F `
 C ) )
Distinct variable groups:    x, y, A    x, z, F, y   
x, G, y, z    ph, x, y    x, C, y, z    z, X
Allowed substitution hints:    ph( z)    A( z)    X( x, y)

Proof of Theorem rlimcn1
Dummy variables  w  c  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn1.1 . . . 4  |-  ( ph  ->  G : A --> X )
21ffvelrnda 6359 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  X )
31feqmptd 6249 . . 3  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
4 rlimcn1.4 . . . 4  |-  ( ph  ->  F : X --> CC )
54feqmptd 6249 . . 3  |-  ( ph  ->  F  =  ( v  e.  X  |->  ( F `
 v ) ) )
6 fveq2 6191 . . 3  |-  ( v  =  ( G `  w )  ->  ( F `  v )  =  ( F `  ( G `  w ) ) )
72, 3, 5, 6fmptco 6396 . 2  |-  ( ph  ->  ( F  o.  G
)  =  ( w  e.  A  |->  ( F `
 ( G `  w ) ) ) )
8 rlimcn1.5 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  X  ( ( abs `  ( z  -  C
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) )
9 fvexd 6203 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  /\  w  e.  A )  ->  ( G `  w
)  e.  _V )
109ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  A. w  e.  A  ( G `  w )  e.  _V )
11 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  y  e.  RR+ )
12 rlimcn1.3 . . . . . . . . . 10  |-  ( ph  ->  G  ~~> r  C )
133, 12eqbrtrrd 4677 . . . . . . . . 9  |-  ( ph  ->  ( w  e.  A  |->  ( G `  w
) )  ~~> r  C
)
1413ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  (
w  e.  A  |->  ( G `  w ) )  ~~> r  C )
1510, 11, 14rlimi 14244 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( G `  w
)  -  C ) )  <  y ) )
16 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
y  e.  RR+  /\  A. z  e.  X  (
( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  ->  ph )
1716, 2sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( y  e.  RR+  /\ 
A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  /\  w  e.  A )  ->  ( G `  w )  e.  X )
18 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( y  e.  RR+  /\ 
A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  /\  w  e.  A )  ->  A. z  e.  X  ( ( abs `  ( z  -  C ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  C )
) )  <  x
) )
19 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  w )  ->  (
z  -  C )  =  ( ( G `
 w )  -  C ) )
2019fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  w )  ->  ( abs `  ( z  -  C ) )  =  ( abs `  (
( G `  w
)  -  C ) ) )
2120breq1d 4663 . . . . . . . . . . . . . 14  |-  ( z  =  ( G `  w )  ->  (
( abs `  (
z  -  C ) )  <  y  <->  ( abs `  ( ( G `  w )  -  C
) )  <  y
) )
22 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  w )  ->  ( F `  z )  =  ( F `  ( G `  w ) ) )
2322oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  w )  ->  (
( F `  z
)  -  ( F `
 C ) )  =  ( ( F `
 ( G `  w ) )  -  ( F `  C ) ) )
2423fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  w )  ->  ( abs `  ( ( F `
 z )  -  ( F `  C ) ) )  =  ( abs `  ( ( F `  ( G `
 w ) )  -  ( F `  C ) ) ) )
2524breq1d 4663 . . . . . . . . . . . . . 14  |-  ( z  =  ( G `  w )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x  <->  ( abs `  ( ( F `  ( G `  w ) )  -  ( F `
 C ) ) )  <  x ) )
2621, 25imbi12d 334 . . . . . . . . . . . . 13  |-  ( z  =  ( G `  w )  ->  (
( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x )  <-> 
( ( abs `  (
( G `  w
)  -  C ) )  <  y  -> 
( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) ) )
2726rspcv 3305 . . . . . . . . . . . 12  |-  ( ( G `  w )  e.  X  ->  ( A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x )  ->  ( ( abs `  ( ( G `  w )  -  C
) )  <  y  ->  ( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) ) )
2817, 18, 27sylc 65 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( y  e.  RR+  /\ 
A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  /\  w  e.  A )  ->  (
( abs `  (
( G `  w
)  -  C ) )  <  y  -> 
( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) )
2928imim2d 57 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( y  e.  RR+  /\ 
A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  /\  w  e.  A )  ->  (
( c  <_  w  ->  ( abs `  (
( G `  w
)  -  C ) )  <  y )  ->  ( c  <_  w  ->  ( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) ) )
3029ralimdva 2962 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
y  e.  RR+  /\  A. z  e.  X  (
( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  ->  ( A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( G `  w
)  -  C ) )  <  y )  ->  A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) ) )
3130reximdv 3016 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
y  e.  RR+  /\  A. z  e.  X  (
( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x ) ) )  ->  ( E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  ( ( G `  w )  -  C ) )  <  y )  ->  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  ( ( F `  ( G `
 w ) )  -  ( F `  C ) ) )  <  x ) ) )
3231expr 643 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x )  ->  ( E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( G `  w
)  -  C ) )  <  y )  ->  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  ( ( F `  ( G `
 w ) )  -  ( F `  C ) ) )  <  x ) ) ) )
3315, 32mpid 44 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( A. z  e.  X  ( ( abs `  (
z  -  C ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 C ) ) )  <  x )  ->  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  ( ( F `  ( G `
 w ) )  -  ( F `  C ) ) )  <  x ) ) )
3433rexlimdva 3031 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  X  ( ( abs `  ( z  -  C ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  C )
) )  <  x
)  ->  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) ) )
358, 34mpd 15 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) )
3635ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. c  e.  RR  A. w  e.  A  (
c  <_  w  ->  ( abs `  ( ( F `  ( G `
 w ) )  -  ( F `  C ) ) )  <  x ) )
374ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  ( G `  w )  e.  X
)  ->  ( F `  ( G `  w
) )  e.  CC )
382, 37syldan 487 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  ( G `  w ) )  e.  CC )
3938ralrimiva 2966 . . . 4  |-  ( ph  ->  A. w  e.  A  ( F `  ( G `
 w ) )  e.  CC )
40 fdm 6051 . . . . . 6  |-  ( G : A --> X  ->  dom  G  =  A )
411, 40syl 17 . . . . 5  |-  ( ph  ->  dom  G  =  A )
42 rlimss 14233 . . . . . 6  |-  ( G  ~~> r  C  ->  dom  G 
C_  RR )
4312, 42syl 17 . . . . 5  |-  ( ph  ->  dom  G  C_  RR )
4441, 43eqsstr3d 3640 . . . 4  |-  ( ph  ->  A  C_  RR )
45 rlimcn1.2 . . . . 5  |-  ( ph  ->  C  e.  X )
464, 45ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( F `  C
)  e.  CC )
4739, 44, 46rlim2 14227 . . 3  |-  ( ph  ->  ( ( w  e.  A  |->  ( F `  ( G `  w ) ) )  ~~> r  ( F `  C )  <->  A. x  e.  RR+  E. c  e.  RR  A. w  e.  A  ( c  <_  w  ->  ( abs `  (
( F `  ( G `  w )
)  -  ( F `
 C ) ) )  <  x ) ) )
4836, 47mpbird 247 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( F `  ( G `  w )
) )  ~~> r  ( F `  C ) )
497, 48eqbrtrd 4675 1  |-  ( ph  ->  ( F  o.  G
)  ~~> r  ( F `
 C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   abscabs 13974    ~~> r crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-rlim 14220
This theorem is referenced by:  rlimcn1b  14320  rlimdiv  14376
  Copyright terms: Public domain W3C validator