MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Structured version   Visualization version   Unicode version

Theorem o1compt 14318
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1  |-  ( ph  ->  F : A --> CC )
o1compt.2  |-  ( ph  ->  F  e.  O(1) )
o1compt.3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
o1compt.4  |-  ( ph  ->  B  C_  RR )
o1compt.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
Assertion
Ref Expression
o1compt  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O(1) )
Distinct variable groups:    x, m, y, A    B, m, x, y    C, m, x    ph, m, x, y    m, F, x
Allowed substitution hints:    C( y)    F( y)

Proof of Theorem o1compt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2  |-  ( ph  ->  F : A --> CC )
2 o1compt.2 . 2  |-  ( ph  ->  F  e.  O(1) )
3 o1compt.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
4 eqid 2622 . . 3  |-  ( y  e.  B  |->  C )  =  ( y  e.  B  |->  C )
53, 4fmptd 6385 . 2  |-  ( ph  ->  ( y  e.  B  |->  C ) : B --> A )
6 o1compt.4 . 2  |-  ( ph  ->  B  C_  RR )
7 o1compt.5 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
8 nfv 1843 . . . . . . . 8  |-  F/ y  x  <_  z
9 nfcv 2764 . . . . . . . . 9  |-  F/_ y
m
10 nfcv 2764 . . . . . . . . 9  |-  F/_ y  <_
11 nffvmpt1 6199 . . . . . . . . 9  |-  F/_ y
( ( y  e.  B  |->  C ) `  z )
129, 10, 11nfbr 4699 . . . . . . . 8  |-  F/ y  m  <_  ( (
y  e.  B  |->  C ) `  z )
138, 12nfim 1825 . . . . . . 7  |-  F/ y ( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )
14 nfv 1843 . . . . . . 7  |-  F/ z ( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )
15 breq2 4657 . . . . . . . 8  |-  ( z  =  y  ->  (
x  <_  z  <->  x  <_  y ) )
16 fveq2 6191 . . . . . . . . 9  |-  ( z  =  y  ->  (
( y  e.  B  |->  C ) `  z
)  =  ( ( y  e.  B  |->  C ) `  y ) )
1716breq2d 4665 . . . . . . . 8  |-  ( z  =  y  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  z )  <-> 
m  <_  ( (
y  e.  B  |->  C ) `  y ) ) )
1815, 17imbi12d 334 . . . . . . 7  |-  ( z  =  y  ->  (
( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )  <->  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) ) ) )
1913, 14, 18cbvral 3167 . . . . . 6  |-  ( A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  ( ( y  e.  B  |->  C ) `
 y ) ) )
20 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
214fvmpt2 6291 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  C  e.  A )  ->  ( ( y  e.  B  |->  C ) `  y )  =  C )
2220, 3, 21syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (
( y  e.  B  |->  C ) `  y
)  =  C )
2322breq2d 4665 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  y )  <-> 
m  <_  C )
)
2423imbi2d 330 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  (
( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )  <->  ( x  <_ 
y  ->  m  <_  C ) ) )
2524ralbidva 2985 . . . . . 6  |-  ( ph  ->  ( A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2619, 25syl5bb 272 . . . . 5  |-  ( ph  ->  ( A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2726rexbidv 3052 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) ) )
2827adantr 481 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
297, 28mpbird 247 . 2  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) ) )
301, 2, 5, 6, 29o1co 14317 1  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935    <_ cle 10075   O(1)co1 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-o1 14221
This theorem is referenced by:  dchrisum0  25209
  Copyright terms: Public domain W3C validator