Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmsscmap2 Structured version   Visualization version   Unicode version

Theorem rnghmsscmap2 41973
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u  |-  ( ph  ->  U  e.  V )
rnghmsscmap.r  |-  ( ph  ->  R  =  (Rng  i^i  U ) )
Assertion
Ref Expression
rnghmsscmap2  |-  ( ph  ->  ( RngHomo  |`  ( R  X.  R ) )  C_cat  (
x  e.  R , 
y  e.  R  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) ) )
Distinct variable group:    x, R, y
Allowed substitution hints:    ph( x, y)    U( x, y)    V( x, y)

Proof of Theorem rnghmsscmap2
Dummy variables  a 
b  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . 3  |-  R  C_  R
21a1i 11 . 2  |-  ( ph  ->  R  C_  R )
3 eqid 2622 . . . . . . 7  |-  ( Base `  a )  =  (
Base `  a )
4 eqid 2622 . . . . . . 7  |-  ( Base `  b )  =  (
Base `  b )
53, 4rnghmf 41899 . . . . . 6  |-  ( h  e.  ( a RngHomo  b
)  ->  h :
( Base `  a ) --> ( Base `  b )
)
6 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  R  /\  b  e.  R )
)  /\  h :
( Base `  a ) --> ( Base `  b )
)  ->  h :
( Base `  a ) --> ( Base `  b )
)
7 fvex 6201 . . . . . . . . . 10  |-  ( Base `  b )  e.  _V
8 fvex 6201 . . . . . . . . . 10  |-  ( Base `  a )  e.  _V
97, 8pm3.2i 471 . . . . . . . . 9  |-  ( (
Base `  b )  e.  _V  /\  ( Base `  a )  e.  _V )
10 elmapg 7870 . . . . . . . . 9  |-  ( ( ( Base `  b
)  e.  _V  /\  ( Base `  a )  e.  _V )  ->  (
h  e.  ( (
Base `  b )  ^m  ( Base `  a
) )  <->  h :
( Base `  a ) --> ( Base `  b )
) )
119, 10mp1i 13 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  R  /\  b  e.  R )
)  /\  h :
( Base `  a ) --> ( Base `  b )
)  ->  ( h  e.  ( ( Base `  b
)  ^m  ( Base `  a ) )  <->  h :
( Base `  a ) --> ( Base `  b )
) )
126, 11mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  R  /\  b  e.  R )
)  /\  h :
( Base `  a ) --> ( Base `  b )
)  ->  h  e.  ( ( Base `  b
)  ^m  ( Base `  a ) ) )
1312ex 450 . . . . . 6  |-  ( (
ph  /\  ( a  e.  R  /\  b  e.  R ) )  -> 
( h : (
Base `  a ) --> ( Base `  b )  ->  h  e.  ( (
Base `  b )  ^m  ( Base `  a
) ) ) )
145, 13syl5 34 . . . . 5  |-  ( (
ph  /\  ( a  e.  R  /\  b  e.  R ) )  -> 
( h  e.  ( a RngHomo  b )  ->  h  e.  ( ( Base `  b )  ^m  ( Base `  a )
) ) )
1514ssrdv 3609 . . . 4  |-  ( (
ph  /\  ( a  e.  R  /\  b  e.  R ) )  -> 
( a RngHomo  b )  C_  ( ( Base `  b
)  ^m  ( Base `  a ) ) )
16 ovres 6800 . . . . 5  |-  ( ( a  e.  R  /\  b  e.  R )  ->  ( a ( RngHomo  |`  ( R  X.  R ) ) b )  =  ( a RngHomo  b ) )
1716adantl 482 . . . 4  |-  ( (
ph  /\  ( a  e.  R  /\  b  e.  R ) )  -> 
( a ( RngHomo  |`  ( R  X.  R ) ) b )  =  ( a RngHomo  b ) )
18 eqidd 2623 . . . . . 6  |-  ( ( a  e.  R  /\  b  e.  R )  ->  ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )  =  ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) )
19 fveq2 6191 . . . . . . . 8  |-  ( y  =  b  ->  ( Base `  y )  =  ( Base `  b
) )
20 fveq2 6191 . . . . . . . 8  |-  ( x  =  a  ->  ( Base `  x )  =  ( Base `  a
) )
2119, 20oveqan12rd 6670 . . . . . . 7  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( Base `  y
)  ^m  ( Base `  x ) )  =  ( ( Base `  b
)  ^m  ( Base `  a ) ) )
2221adantl 482 . . . . . 6  |-  ( ( ( a  e.  R  /\  b  e.  R
)  /\  ( x  =  a  /\  y  =  b ) )  ->  ( ( Base `  y )  ^m  ( Base `  x ) )  =  ( ( Base `  b )  ^m  ( Base `  a ) ) )
23 simpl 473 . . . . . 6  |-  ( ( a  e.  R  /\  b  e.  R )  ->  a  e.  R )
24 simpr 477 . . . . . 6  |-  ( ( a  e.  R  /\  b  e.  R )  ->  b  e.  R )
25 ovexd 6680 . . . . . 6  |-  ( ( a  e.  R  /\  b  e.  R )  ->  ( ( Base `  b
)  ^m  ( Base `  a ) )  e. 
_V )
2618, 22, 23, 24, 25ovmpt2d 6788 . . . . 5  |-  ( ( a  e.  R  /\  b  e.  R )  ->  ( a ( x  e.  R ,  y  e.  R  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) ) b )  =  ( (
Base `  b )  ^m  ( Base `  a
) ) )
2726adantl 482 . . . 4  |-  ( (
ph  /\  ( a  e.  R  /\  b  e.  R ) )  -> 
( a ( x  e.  R ,  y  e.  R  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) ) b )  =  ( (
Base `  b )  ^m  ( Base `  a
) ) )
2815, 17, 273sstr4d 3648 . . 3  |-  ( (
ph  /\  ( a  e.  R  /\  b  e.  R ) )  -> 
( a ( RngHomo  |`  ( R  X.  R ) ) b )  C_  (
a ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) b ) )
2928ralrimivva 2971 . 2  |-  ( ph  ->  A. a  e.  R  A. b  e.  R  ( a ( RngHomo  |`  ( R  X.  R ) ) b )  C_  (
a ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) b ) )
30 rnghmfn 41890 . . . . 5  |- RngHomo  Fn  (Rng  X. Rng )
3130a1i 11 . . . 4  |-  ( ph  -> RngHomo 
Fn  (Rng  X. Rng )
)
32 rnghmsscmap.r . . . . . 6  |-  ( ph  ->  R  =  (Rng  i^i  U ) )
33 inss1 3833 . . . . . 6  |-  (Rng  i^i  U )  C_ Rng
3432, 33syl6eqss 3655 . . . . 5  |-  ( ph  ->  R  C_ Rng )
35 xpss12 5225 . . . . 5  |-  ( ( R  C_ Rng  /\  R  C_ Rng )  ->  ( R  X.  R )  C_  (Rng  X. Rng ) )
3634, 34, 35syl2anc 693 . . . 4  |-  ( ph  ->  ( R  X.  R
)  C_  (Rng  X. Rng ) )
37 fnssres 6004 . . . 4  |-  ( ( RngHomo  Fn  (Rng  X. Rng )  /\  ( R  X.  R
)  C_  (Rng  X. Rng ) )  ->  ( RngHomo  |`  ( R  X.  R
) )  Fn  ( R  X.  R ) )
3831, 36, 37syl2anc 693 . . 3  |-  ( ph  ->  ( RngHomo  |`  ( R  X.  R ) )  Fn  ( R  X.  R
) )
39 eqid 2622 . . . . 5  |-  ( x  e.  R ,  y  e.  R  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) )  =  ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
40 ovex 6678 . . . . 5  |-  ( (
Base `  y )  ^m  ( Base `  x
) )  e.  _V
4139, 40fnmpt2i 7239 . . . 4  |-  ( x  e.  R ,  y  e.  R  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) )  Fn  ( R  X.  R
)
4241a1i 11 . . 3  |-  ( ph  ->  ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )  Fn  ( R  X.  R ) )
43 incom 3805 . . . . 5  |-  (Rng  i^i  U )  =  ( U  i^i Rng )
44 rnghmsscmap.u . . . . . 6  |-  ( ph  ->  U  e.  V )
45 inex1g 4801 . . . . . 6  |-  ( U  e.  V  ->  ( U  i^i Rng )  e.  _V )
4644, 45syl 17 . . . . 5  |-  ( ph  ->  ( U  i^i Rng )  e.  _V )
4743, 46syl5eqel 2705 . . . 4  |-  ( ph  ->  (Rng  i^i  U )  e.  _V )
4832, 47eqeltrd 2701 . . 3  |-  ( ph  ->  R  e.  _V )
4938, 42, 48isssc 16480 . 2  |-  ( ph  ->  ( ( RngHomo  |`  ( R  X.  R ) ) 
C_cat  ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )  <-> 
( R  C_  R  /\  A. a  e.  R  A. b  e.  R  ( a ( RngHomo  |`  ( R  X.  R ) ) b )  C_  (
a ( x  e.  R ,  y  e.  R  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) b ) ) ) )
502, 29, 49mpbir2and 957 1  |-  ( ph  ->  ( RngHomo  |`  ( R  X.  R ) )  C_cat  (
x  e.  R , 
y  e.  R  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Basecbs 15857    C_cat cssc 16467  Rngcrng 41874   RngHomo crngh 41885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-ssc 16470  df-ghm 17658  df-abl 18196  df-rng0 41875  df-rnghomo 41887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator