Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Visualization version   Unicode version

Theorem rngoisoco 33781
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngIso  T ) )

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 33779 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
213expa 1265 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
323adantl3 1219 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
4 rngoisohom 33779 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
543expa 1265 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
653adantl1 1217 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
73, 6anim12da 33506 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )
8 rngohomco 33773 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
97, 8syldan 487 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
10 eqid 2622 . . . . . . 7  |-  ( 1st `  S )  =  ( 1st `  S )
11 eqid 2622 . . . . . . 7  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
12 eqid 2622 . . . . . . 7  |-  ( 1st `  T )  =  ( 1st `  T )
13 eqid 2622 . . . . . . 7  |-  ran  ( 1st `  T )  =  ran  ( 1st `  T
)
1410, 11, 12, 13rngoiso1o 33778 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
15143expa 1265 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S ) -1-1-onto-> ran  ( 1st `  T
) )
16153adantl1 1217 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
1716adantrl 752 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
18 eqid 2622 . . . . . . 7  |-  ( 1st `  R )  =  ( 1st `  R )
19 eqid 2622 . . . . . . 7  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
2018, 19, 10, 11rngoiso1o 33778 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
21203expa 1265 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) )
22213adantl3 1219 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
2322adantrr 753 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
24 f1oco 6159 . . 3  |-  ( ( G : ran  ( 1st `  S ) -1-1-onto-> ran  ( 1st `  T )  /\  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) )  ->  ( G  o.  F ) : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  T
) )
2517, 23, 24syl2anc 693 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F ) : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  T
) )
2618, 19, 12, 13isrngoiso 33777 . . . 4  |-  ( ( R  e.  RingOps  /\  T  e.  RingOps )  ->  (
( G  o.  F
)  e.  ( R 
RngIso  T )  <->  ( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F ) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T
) ) ) )
27263adant2 1080 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  ->  ( ( G  o.  F )  e.  ( R  RngIso  T )  <-> 
( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F
) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T ) ) ) )
2827adantr 481 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  (
( G  o.  F
)  e.  ( R 
RngIso  T )  <->  ( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F ) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T
) ) ) )
299, 25, 28mpbir2and 957 1  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngIso  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   ran crn 5115    o. ccom 5118   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   RingOpscrngo 33693    RngHom crnghom 33759    RngIso crngiso 33760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-rngohom 33762  df-rngoiso 33775
This theorem is referenced by:  riscer  33787
  Copyright terms: Public domain W3C validator