Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1r Structured version   Visualization version   Unicode version

Theorem rngonegmn1r 33741
Description: Negation in a ring is the same as right multiplication by  -u 1. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1  |-  G  =  ( 1st `  R
)
ringneg.2  |-  H  =  ( 2nd `  R
)
ringneg.3  |-  X  =  ran  G
ringneg.4  |-  N  =  ( inv `  G
)
ringneg.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngonegmn1r  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( A H ( N `  U
) ) )

Proof of Theorem rngonegmn1r
StepHypRef Expression
1 ringneg.3 . . . . . . . . 9  |-  X  =  ran  G
2 ringneg.1 . . . . . . . . . 10  |-  G  =  ( 1st `  R
)
32rneqi 5352 . . . . . . . . 9  |-  ran  G  =  ran  ( 1st `  R
)
41, 3eqtri 2644 . . . . . . . 8  |-  X  =  ran  ( 1st `  R
)
5 ringneg.2 . . . . . . . 8  |-  H  =  ( 2nd `  R
)
6 ringneg.5 . . . . . . . 8  |-  U  =  (GId `  H )
74, 5, 6rngo1cl 33738 . . . . . . 7  |-  ( R  e.  RingOps  ->  U  e.  X
)
8 ringneg.4 . . . . . . . 8  |-  N  =  ( inv `  G
)
92, 1, 8rngonegcl 33726 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( N `  U )  e.  X )
107, 9mpdan 702 . . . . . 6  |-  ( R  e.  RingOps  ->  ( N `  U )  e.  X
)
1110adantr 481 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  U )  e.  X )
127adantr 481 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  U  e.  X )
1311, 12jca 554 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
)  e.  X  /\  U  e.  X )
)
142, 5, 1rngodi 33703 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  ( N `  U )  e.  X  /\  U  e.  X ) )  -> 
( A H ( ( N `  U
) G U ) )  =  ( ( A H ( N `
 U ) ) G ( A H U ) ) )
15143exp2 1285 . . . . 5  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( ( N `  U )  e.  X  ->  ( U  e.  X  ->  ( A H ( ( N `
 U ) G U ) )  =  ( ( A H ( N `  U
) ) G ( A H U ) ) ) ) ) )
1615imp43 621 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( ( N `  U )  e.  X  /\  U  e.  X
) )  ->  ( A H ( ( N `
 U ) G U ) )  =  ( ( A H ( N `  U
) ) G ( A H U ) ) )
1713, 16mpdan 702 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( ( N `
 U ) G U ) )  =  ( ( A H ( N `  U
) ) G ( A H U ) ) )
18 eqid 2622 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
192, 1, 8, 18rngoaddneg2 33728 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  (
( N `  U
) G U )  =  (GId `  G
) )
207, 19mpdan 702 . . . . . 6  |-  ( R  e.  RingOps  ->  ( ( N `
 U ) G U )  =  (GId
`  G ) )
2120adantr 481 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
) G U )  =  (GId `  G
) )
2221oveq2d 6666 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( ( N `
 U ) G U ) )  =  ( A H (GId
`  G ) ) )
2318, 1, 2, 5rngorz 33722 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H (GId `  G
) )  =  (GId
`  G ) )
2422, 23eqtrd 2656 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( ( N `
 U ) G U ) )  =  (GId `  G )
)
255, 4, 6rngoridm 33737 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H U )  =  A )
2625oveq2d 6666 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H ( N `  U ) ) G ( A H U ) )  =  ( ( A H ( N `  U ) ) G A ) )
2717, 24, 263eqtr3rd 2665 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H ( N `  U ) ) G A )  =  (GId `  G
) )
282, 5, 1rngocl 33700 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  ( N `  U )  e.  X )  ->  ( A H ( N `  U ) )  e.  X )
2911, 28mpd3an3 1425 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( N `  U ) )  e.  X )
302rngogrpo 33709 . . . 4  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
311, 18, 8grpoinvid2 27383 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( A H ( N `  U ) )  e.  X )  ->  (
( N `  A
)  =  ( A H ( N `  U ) )  <->  ( ( A H ( N `  U ) ) G A )  =  (GId
`  G ) ) )
3230, 31syl3an1 1359 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  ( A H ( N `  U ) )  e.  X )  ->  (
( N `  A
)  =  ( A H ( N `  U ) )  <->  ( ( A H ( N `  U ) ) G A )  =  (GId
`  G ) ) )
3329, 32mpd3an3 1425 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  A
)  =  ( A H ( N `  U ) )  <->  ( ( A H ( N `  U ) ) G A )  =  (GId
`  G ) ) )
3427, 33mpbird 247 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( A H ( N `  U
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343  GIdcgi 27344   invcgn 27345   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694
This theorem is referenced by:  rngonegrmul  33743
  Copyright terms: Public domain W3C validator