| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosubdi | Structured version Visualization version Unicode version | ||
| Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| ringsubdi.1 |
|
| ringsubdi.2 |
|
| ringsubdi.3 |
|
| ringsubdi.4 |
|
| Ref | Expression |
|---|---|
| rngosubdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.1 |
. . . . 5
| |
| 2 | ringsubdi.3 |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | ringsubdi.4 |
. . . . 5
| |
| 5 | 1, 2, 3, 4 | rngosub 33729 |
. . . 4
|
| 6 | 5 | 3adant3r1 1274 |
. . 3
|
| 7 | 6 | oveq2d 6666 |
. 2
|
| 8 | ringsubdi.2 |
. . . . . . 7
| |
| 9 | 1, 8, 2 | rngocl 33700 |
. . . . . 6
|
| 10 | 9 | 3adant3r3 1276 |
. . . . 5
|
| 11 | 1, 8, 2 | rngocl 33700 |
. . . . . 6
|
| 12 | 11 | 3adant3r2 1275 |
. . . . 5
|
| 13 | 10, 12 | jca 554 |
. . . 4
|
| 14 | 1, 2, 3, 4 | rngosub 33729 |
. . . . 5
|
| 15 | 14 | 3expb 1266 |
. . . 4
|
| 16 | 13, 15 | syldan 487 |
. . 3
|
| 17 | idd 24 |
. . . . . . 7
| |
| 18 | idd 24 |
. . . . . . 7
| |
| 19 | 1, 2, 3 | rngonegcl 33726 |
. . . . . . . 8
|
| 20 | 19 | ex 450 |
. . . . . . 7
|
| 21 | 17, 18, 20 | 3anim123d 1406 |
. . . . . 6
|
| 22 | 21 | imp 445 |
. . . . 5
|
| 23 | 1, 8, 2 | rngodi 33703 |
. . . . 5
|
| 24 | 22, 23 | syldan 487 |
. . . 4
|
| 25 | 1, 8, 2, 3 | rngonegrmul 33743 |
. . . . . 6
|
| 26 | 25 | 3adant3r2 1275 |
. . . . 5
|
| 27 | 26 | oveq2d 6666 |
. . . 4
|
| 28 | 24, 27 | eqtr4d 2659 |
. . 3
|
| 29 | 16, 28 | eqtr4d 2659 |
. 2
|
| 30 | 7, 29 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-ass 33642 df-exid 33644 df-mgmOLD 33648 df-sgrOLD 33660 df-mndo 33666 df-rngo 33694 |
| This theorem is referenced by: dmncan1 33875 |
| Copyright terms: Public domain | W3C validator |