Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncan1 Structured version   Visualization version   Unicode version

Theorem dmncan1 33875
Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
dmncan.1  |-  G  =  ( 1st `  R
)
dmncan.2  |-  H  =  ( 2nd `  R
)
dmncan.3  |-  X  =  ran  G
dmncan.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
dmncan1  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  (
( A H B )  =  ( A H C )  ->  B  =  C )
)

Proof of Theorem dmncan1
StepHypRef Expression
1 dmnrngo 33856 . . . . . 6  |-  ( R  e.  Dmn  ->  R  e.  RingOps )
2 dmncan.1 . . . . . . 7  |-  G  =  ( 1st `  R
)
3 dmncan.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
4 dmncan.3 . . . . . . 7  |-  X  =  ran  G
5 eqid 2622 . . . . . . 7  |-  (  /g  `  G )  =  (  /g  `  G )
62, 3, 4, 5rngosubdi 33744 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H ( B (  /g  `  G ) C ) )  =  ( ( A H B ) (  /g  `  G ) ( A H C ) ) )
71, 6sylan 488 . . . . 5  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A H ( B (  /g  `  G ) C ) )  =  ( ( A H B ) (  /g  `  G ) ( A H C ) ) )
87adantr 481 . . . 4  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  ( A H ( B (  /g  `  G ) C ) )  =  ( ( A H B ) (  /g  `  G ) ( A H C ) ) )
98eqeq1d 2624 . . 3  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  (
( A H ( B (  /g  `  G
) C ) )  =  Z  <->  ( ( A H B ) (  /g  `  G ) ( A H C ) )  =  Z ) )
102rngogrpo 33709 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
111, 10syl 17 . . . . . . . . . . 11  |-  ( R  e.  Dmn  ->  G  e.  GrpOp )
124, 5grpodivcl 27393 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B (  /g  `  G
) C )  e.  X )
13123expb 1266 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( B
(  /g  `  G ) C )  e.  X
)
1411, 13sylan 488 . . . . . . . . . 10  |-  ( ( R  e.  Dmn  /\  ( B  e.  X  /\  C  e.  X
) )  ->  ( B (  /g  `  G
) C )  e.  X )
1514adantlr 751 . . . . . . . . 9  |-  ( ( ( R  e.  Dmn  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( B (  /g  `  G ) C )  e.  X )
16 dmncan.4 . . . . . . . . . . . 12  |-  Z  =  (GId `  G )
172, 3, 4, 16dmnnzd 33874 . . . . . . . . . . 11  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  ( B (  /g  `  G ) C )  e.  X  /\  ( A H ( B (  /g  `  G ) C ) )  =  Z ) )  -> 
( A  =  Z  \/  ( B (  /g  `  G ) C )  =  Z ) )
18173exp2 1285 . . . . . . . . . 10  |-  ( R  e.  Dmn  ->  ( A  e.  X  ->  ( ( B (  /g  `  G ) C )  e.  X  ->  (
( A H ( B (  /g  `  G
) C ) )  =  Z  ->  ( A  =  Z  \/  ( B (  /g  `  G
) C )  =  Z ) ) ) ) )
1918imp31 448 . . . . . . . . 9  |-  ( ( ( R  e.  Dmn  /\  A  e.  X )  /\  ( B (  /g  `  G ) C )  e.  X
)  ->  ( ( A H ( B (  /g  `  G ) C ) )  =  Z  ->  ( A  =  Z  \/  ( B (  /g  `  G
) C )  =  Z ) ) )
2015, 19syldan 487 . . . . . . . 8  |-  ( ( ( R  e.  Dmn  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A H ( B (  /g  `  G ) C ) )  =  Z  -> 
( A  =  Z  \/  ( B (  /g  `  G ) C )  =  Z ) ) )
2120exp43 640 . . . . . . 7  |-  ( R  e.  Dmn  ->  ( A  e.  X  ->  ( B  e.  X  -> 
( C  e.  X  ->  ( ( A H ( B (  /g  `  G ) C ) )  =  Z  -> 
( A  =  Z  \/  ( B (  /g  `  G ) C )  =  Z ) ) ) ) ) )
22213imp2 1282 . . . . . 6  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A H ( B (  /g  `  G
) C ) )  =  Z  ->  ( A  =  Z  \/  ( B (  /g  `  G
) C )  =  Z ) ) )
23 neor 2885 . . . . . 6  |-  ( ( A  =  Z  \/  ( B (  /g  `  G
) C )  =  Z )  <->  ( A  =/=  Z  ->  ( B
(  /g  `  G ) C )  =  Z ) )
2422, 23syl6ib 241 . . . . 5  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A H ( B (  /g  `  G
) C ) )  =  Z  ->  ( A  =/=  Z  ->  ( B (  /g  `  G
) C )  =  Z ) ) )
2524com23 86 . . . 4  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A  =/=  Z  ->  (
( A H ( B (  /g  `  G
) C ) )  =  Z  ->  ( B (  /g  `  G
) C )  =  Z ) ) )
2625imp 445 . . 3  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  (
( A H ( B (  /g  `  G
) C ) )  =  Z  ->  ( B (  /g  `  G
) C )  =  Z ) )
279, 26sylbird 250 . 2  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  (
( ( A H B ) (  /g  `  G ) ( A H C ) )  =  Z  ->  ( B (  /g  `  G
) C )  =  Z ) )
2811adantr 481 . . . 4  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  G  e.  GrpOp )
292, 3, 4rngocl 33700 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  ( A H B )  e.  X )
30293adant3r3 1276 . . . . 5  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H B )  e.  X
)
311, 30sylan 488 . . . 4  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A H B )  e.  X )
322, 3, 4rngocl 33700 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  C  e.  X )  ->  ( A H C )  e.  X )
33323adant3r2 1275 . . . . 5  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H C )  e.  X
)
341, 33sylan 488 . . . 4  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A H C )  e.  X )
354, 16, 5grpoeqdivid 33680 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A H B )  e.  X  /\  ( A H C )  e.  X )  ->  (
( A H B )  =  ( A H C )  <->  ( ( A H B ) (  /g  `  G ) ( A H C ) )  =  Z ) )
3628, 31, 34, 35syl3anc 1326 . . 3  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A H B )  =  ( A H C )  <->  ( ( A H B ) (  /g  `  G ) ( A H C ) )  =  Z ) )
3736adantr 481 . 2  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  (
( A H B )  =  ( A H C )  <->  ( ( A H B ) (  /g  `  G ) ( A H C ) )  =  Z ) )
384, 16, 5grpoeqdivid 33680 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B  =  C  <->  ( B
(  /g  `  G ) C )  =  Z ) )
39383expb 1266 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( B  =  C  <->  ( B (  /g  `  G ) C )  =  Z ) )
4011, 39sylan 488 . . . 4  |-  ( ( R  e.  Dmn  /\  ( B  e.  X  /\  C  e.  X
) )  ->  ( B  =  C  <->  ( B
(  /g  `  G ) C )  =  Z ) )
41403adantr1 1220 . . 3  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( B  =  C  <->  ( B
(  /g  `  G ) C )  =  Z ) )
4241adantr 481 . 2  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  ( B  =  C  <->  ( B
(  /g  `  G ) C )  =  Z ) )
4327, 37, 423imtr4d 283 1  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A  =/=  Z )  ->  (
( A H B )  =  ( A H C )  ->  B  =  C )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343  GIdcgi 27344    /g cgs 27346   RingOpscrngo 33693   Dmncdmn 33846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-com2 33789  df-crngo 33793  df-idl 33809  df-pridl 33810  df-prrngo 33847  df-dmn 33848  df-igen 33859
This theorem is referenced by:  dmncan2  33876
  Copyright terms: Public domain W3C validator