| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmncan1 | Structured version Visualization version Unicode version | ||
| Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| dmncan.1 |
|
| dmncan.2 |
|
| dmncan.3 |
|
| dmncan.4 |
|
| Ref | Expression |
|---|---|
| dmncan1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmnrngo 33856 |
. . . . . 6
| |
| 2 | dmncan.1 |
. . . . . . 7
| |
| 3 | dmncan.2 |
. . . . . . 7
| |
| 4 | dmncan.3 |
. . . . . . 7
| |
| 5 | eqid 2622 |
. . . . . . 7
| |
| 6 | 2, 3, 4, 5 | rngosubdi 33744 |
. . . . . 6
|
| 7 | 1, 6 | sylan 488 |
. . . . 5
|
| 8 | 7 | adantr 481 |
. . . 4
|
| 9 | 8 | eqeq1d 2624 |
. . 3
|
| 10 | 2 | rngogrpo 33709 |
. . . . . . . . . . . 12
|
| 11 | 1, 10 | syl 17 |
. . . . . . . . . . 11
|
| 12 | 4, 5 | grpodivcl 27393 |
. . . . . . . . . . . 12
|
| 13 | 12 | 3expb 1266 |
. . . . . . . . . . 11
|
| 14 | 11, 13 | sylan 488 |
. . . . . . . . . 10
|
| 15 | 14 | adantlr 751 |
. . . . . . . . 9
|
| 16 | dmncan.4 |
. . . . . . . . . . . 12
| |
| 17 | 2, 3, 4, 16 | dmnnzd 33874 |
. . . . . . . . . . 11
|
| 18 | 17 | 3exp2 1285 |
. . . . . . . . . 10
|
| 19 | 18 | imp31 448 |
. . . . . . . . 9
|
| 20 | 15, 19 | syldan 487 |
. . . . . . . 8
|
| 21 | 20 | exp43 640 |
. . . . . . 7
|
| 22 | 21 | 3imp2 1282 |
. . . . . 6
|
| 23 | neor 2885 |
. . . . . 6
| |
| 24 | 22, 23 | syl6ib 241 |
. . . . 5
|
| 25 | 24 | com23 86 |
. . . 4
|
| 26 | 25 | imp 445 |
. . 3
|
| 27 | 9, 26 | sylbird 250 |
. 2
|
| 28 | 11 | adantr 481 |
. . . 4
|
| 29 | 2, 3, 4 | rngocl 33700 |
. . . . . 6
|
| 30 | 29 | 3adant3r3 1276 |
. . . . 5
|
| 31 | 1, 30 | sylan 488 |
. . . 4
|
| 32 | 2, 3, 4 | rngocl 33700 |
. . . . . 6
|
| 33 | 32 | 3adant3r2 1275 |
. . . . 5
|
| 34 | 1, 33 | sylan 488 |
. . . 4
|
| 35 | 4, 16, 5 | grpoeqdivid 33680 |
. . . 4
|
| 36 | 28, 31, 34, 35 | syl3anc 1326 |
. . 3
|
| 37 | 36 | adantr 481 |
. 2
|
| 38 | 4, 16, 5 | grpoeqdivid 33680 |
. . . . . 6
|
| 39 | 38 | 3expb 1266 |
. . . . 5
|
| 40 | 11, 39 | sylan 488 |
. . . 4
|
| 41 | 40 | 3adantr1 1220 |
. . 3
|
| 42 | 41 | adantr 481 |
. 2
|
| 43 | 27, 37, 42 | 3imtr4d 283 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-ass 33642 df-exid 33644 df-mgmOLD 33648 df-sgrOLD 33660 df-mndo 33666 df-rngo 33694 df-com2 33789 df-crngo 33793 df-idl 33809 df-pridl 33810 df-prrngo 33847 df-dmn 33848 df-igen 33859 |
| This theorem is referenced by: dmncan2 33876 |
| Copyright terms: Public domain | W3C validator |