Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptsn Structured version   Visualization version   Unicode version

Theorem rnmptsn 33182
Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.)
Assertion
Ref Expression
rnmptsn  |-  ran  (
x  e.  A  |->  { x } )  =  { u  |  E. x  e.  A  u  =  { x } }
Distinct variable groups:    u, A    x, u
Allowed substitution hint:    A( x)

Proof of Theorem rnmptsn
StepHypRef Expression
1 df-mpt 4730 . . . 4  |-  ( x  e.  A  |->  { x } )  =  { <. x ,  u >.  |  ( x  e.  A  /\  u  =  {
x } ) }
21rneqi 5352 . . 3  |-  ran  (
x  e.  A  |->  { x } )  =  ran  { <. x ,  u >.  |  (
x  e.  A  /\  u  =  { x } ) }
3 rnopab 5370 . . 3  |-  ran  { <. x ,  u >.  |  ( x  e.  A  /\  u  =  {
x } ) }  =  { u  |  E. x ( x  e.  A  /\  u  =  { x } ) }
42, 3eqtri 2644 . 2  |-  ran  (
x  e.  A  |->  { x } )  =  { u  |  E. x ( x  e.  A  /\  u  =  { x } ) }
5 df-rex 2918 . . 3  |-  ( E. x  e.  A  u  =  { x }  <->  E. x ( x  e.  A  /\  u  =  { x } ) )
65abbii 2739 . 2  |-  { u  |  E. x  e.  A  u  =  { x } }  =  {
u  |  E. x
( x  e.  A  /\  u  =  {
x } ) }
74, 6eqtr4i 2647 1  |-  ran  (
x  e.  A  |->  { x } )  =  { u  |  E. x  e.  A  u  =  { x } }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   {csn 4177   {copab 4712    |-> cmpt 4729   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  f1omptsnlem  33183  mptsnunlem  33185  dissneqlem  33187
  Copyright terms: Public domain W3C validator