Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimcabssub0 Structured version   Visualization version   Unicode version

Theorem ellimcabssub0 39849
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ellimcabssub0.f  |-  F  =  ( x  e.  A  |->  B )
ellimcabssub0.g  |-  G  =  ( x  e.  A  |->  ( B  -  C
) )
ellimcabssub0.a  |-  ( ph  ->  A  C_  CC )
ellimcabssub0.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
ellimcabssub0.p  |-  ( ph  ->  D  e.  CC )
ellimcabssub0.c  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
ellimcabssub0  |-  ( ph  ->  ( C  e.  ( F lim CC  D )  <->  0  e.  ( G lim
CC  D ) ) )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    D( x)    F( x)    G( x)

Proof of Theorem ellimcabssub0
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimcabssub0.c . . . 4  |-  ( ph  ->  C  e.  CC )
2 0cnd 10033 . . . 4  |-  ( ph  ->  0  e.  CC )
31, 22thd 255 . . 3  |-  ( ph  ->  ( C  e.  CC  <->  0  e.  CC ) )
4 ellimcabssub0.b . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
51adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
64, 5subcld 10392 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( B  -  C )  e.  CC )
7 ellimcabssub0.g . . . . . . . . . . . . 13  |-  G  =  ( x  e.  A  |->  ( B  -  C
) )
86, 7fmptd 6385 . . . . . . . . . . . 12  |-  ( ph  ->  G : A --> CC )
98ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( G `  z )  e.  CC )
109subid1d 10381 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  (
( G `  z
)  -  0 )  =  ( G `  z ) )
11 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  A )
12 vex 3203 . . . . . . . . . . . . . 14  |-  z  e. 
_V
13 csbov1g 6690 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  [_ z  /  x ]_ ( B  -  C )  =  ( [_ z  /  x ]_ B  -  C
) )
1412, 13ax-mp 5 . . . . . . . . . . . . 13  |-  [_ z  /  x ]_ ( B  -  C )  =  ( [_ z  /  x ]_ B  -  C
)
1514a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ ( B  -  C )  =  ( [_ z  /  x ]_ B  -  C
) )
16 sban 2399 . . . . . . . . . . . . . . . . 17  |-  ( [ z  /  x ]
( ph  /\  x  e.  A )  <->  ( [
z  /  x ] ph  /\  [ z  /  x ] x  e.  A
) )
17 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ x ph
1817sbf 2380 . . . . . . . . . . . . . . . . . 18  |-  ( [ z  /  x ] ph 
<-> 
ph )
19 clelsb3 2729 . . . . . . . . . . . . . . . . . 18  |-  ( [ z  /  x ]
x  e.  A  <->  z  e.  A )
2018, 19anbi12i 733 . . . . . . . . . . . . . . . . 17  |-  ( ( [ z  /  x ] ph  /\  [ z  /  x ] x  e.  A )  <->  ( ph  /\  z  e.  A ) )
2116, 20bitri 264 . . . . . . . . . . . . . . . 16  |-  ( [ z  /  x ]
( ph  /\  x  e.  A )  <->  ( ph  /\  z  e.  A ) )
224nfth 1727 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( ( ph  /\  x  e.  A )  ->  B  e.  CC )
2322sbf 2380 . . . . . . . . . . . . . . . . 17  |-  ( [ z  /  x ]
( ( ph  /\  x  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  x  e.  A )  ->  B  e.  CC ) )
24 sbim 2395 . . . . . . . . . . . . . . . . 17  |-  ( [ z  /  x ]
( ( ph  /\  x  e.  A )  ->  B  e.  CC )  <-> 
( [ z  /  x ] ( ph  /\  x  e.  A )  ->  [ z  /  x ] B  e.  CC ) )
2523, 24sylbb1 227 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  ->  B  e.  CC )  ->  ( [ z  /  x ] ( ph  /\  x  e.  A )  ->  [ z  /  x ] B  e.  CC ) )
2621, 25syl5bir 233 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  ->  B  e.  CC )  ->  (
( ph  /\  z  e.  A )  ->  [ z  /  x ] B  e.  CC ) )
274, 26ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  A )  ->  [ z  /  x ] B  e.  CC )
28 sbsbc 3439 . . . . . . . . . . . . . . 15  |-  ( [ z  /  x ] B  e.  CC  <->  [. z  /  x ]. B  e.  CC )
29 sbcel1g 3987 . . . . . . . . . . . . . . . 16  |-  ( z  e.  _V  ->  ( [. z  /  x ]. B  e.  CC  <->  [_ z  /  x ]_ B  e.  CC )
)
3012, 29ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. z  /  x ]. B  e.  CC  <->  [_ z  /  x ]_ B  e.  CC )
3128, 30bitri 264 . . . . . . . . . . . . . 14  |-  ( [ z  /  x ] B  e.  CC  <->  [_ z  /  x ]_ B  e.  CC )
3227, 31sylib 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ B  e.  CC )
331adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  CC )
3432, 33subcld 10392 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  A )  ->  ( [_ z  /  x ]_ B  -  C
)  e.  CC )
3515, 34eqeltrd 2701 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ ( B  -  C )  e.  CC )
367fvmpts 6285 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  [_ z  /  x ]_ ( B  -  C
)  e.  CC )  ->  ( G `  z )  =  [_ z  /  x ]_ ( B  -  C )
)
3711, 35, 36syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  ( G `  z )  =  [_ z  /  x ]_ ( B  -  C
) )
38 ellimcabssub0.f . . . . . . . . . . . . . 14  |-  F  =  ( x  e.  A  |->  B )
3938fvmpts 6285 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  /\  [_ z  /  x ]_ B  e.  CC )  ->  ( F `  z
)  =  [_ z  /  x ]_ B )
4011, 32, 39syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  [_ z  /  x ]_ B )
4140oveq1d 6665 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  (
( F `  z
)  -  C )  =  ( [_ z  /  x ]_ B  -  C ) )
4241, 14syl6reqr 2675 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ ( B  -  C )  =  ( ( F `  z )  -  C
) )
4310, 37, 423eqtrrd 2661 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  (
( F `  z
)  -  C )  =  ( ( G `
 z )  - 
0 ) )
4443fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( F `
 z )  -  C ) )  =  ( abs `  (
( G `  z
)  -  0 ) ) )
4544breq1d 4663 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( F `  z
)  -  C ) )  <  y  <->  ( abs `  ( ( G `  z )  -  0 ) )  <  y
) )
4645imbi2d 330 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  w
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  y
)  <->  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
w )  ->  ( abs `  ( ( G `
 z )  - 
0 ) )  < 
y ) ) )
4746ralbidva 2985 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
w )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
y )  <->  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  w )  -> 
( abs `  (
( G `  z
)  -  0 ) )  <  y ) ) )
4847rexbidv 3052 . . . 4  |-  ( ph  ->  ( E. w  e.  RR+  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  w
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  y
)  <->  E. w  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  w )  ->  ( abs `  (
( G `  z
)  -  0 ) )  <  y ) ) )
4948ralbidv 2986 . . 3  |-  ( ph  ->  ( A. y  e.  RR+  E. w  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  w )  ->  ( abs `  (
( F `  z
)  -  C ) )  <  y )  <->  A. y  e.  RR+  E. w  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
w )  ->  ( abs `  ( ( G `
 z )  - 
0 ) )  < 
y ) ) )
503, 49anbi12d 747 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. y  e.  RR+  E. w  e.  RR+  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  w
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  y
) )  <->  ( 0  e.  CC  /\  A. y  e.  RR+  E. w  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
w )  ->  ( abs `  ( ( G `
 z )  - 
0 ) )  < 
y ) ) ) )
514, 38fmptd 6385 . . 3  |-  ( ph  ->  F : A --> CC )
52 ellimcabssub0.a . . 3  |-  ( ph  ->  A  C_  CC )
53 ellimcabssub0.p . . 3  |-  ( ph  ->  D  e.  CC )
5451, 52, 53ellimc3 23643 . 2  |-  ( ph  ->  ( C  e.  ( F lim CC  D )  <-> 
( C  e.  CC  /\ 
A. y  e.  RR+  E. w  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  w )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  y ) ) ) )
558, 52, 53ellimc3 23643 . 2  |-  ( ph  ->  ( 0  e.  ( G lim CC  D )  <-> 
( 0  e.  CC  /\ 
A. y  e.  RR+  E. w  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  w )  -> 
( abs `  (
( G `  z
)  -  0 ) )  <  y ) ) ) )
5650, 54, 553bitr4d 300 1  |-  ( ph  ->  ( C  e.  ( F lim CC  D )  <->  0  e.  ( G lim
CC  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   [wsb 1880    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   [.wsbc 3435   [_csb 3533    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    < clt 10074    - cmin 10266   RR+crp 11832   abscabs 13974   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  reclimc  39885
  Copyright terms: Public domain W3C validator